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Abstract

Financial activities such as crowdfunding and IPO underwriting involve aggregating

information from diverse investors, sequential sales, observational learning, and most

interestingly, all-or-nothing (AoN) rules that contingent the financing upon achiev-

ing certain fundraising targets. We incorporate these features into a classical model

of information cascade, and find that AoN leads to uni-directional cascades in which

investors rationally ignore private signals and imitate preceding investors only if the

preceding investors decide to invest. Consequently, an entrepreneur prices issuance

more aggressively, and fundraising may succeed rapidly but never fails rapidly. In-

formation production also becomes more efficient, especially with a large crowd of

investors, yielding more probable financing of good projects, and the weeding-outs of

bad projects that are absent in earlier models. More generally, endogenous pricing with

AoN targets leads to greater financing feasibility and better harnessing of the wisdom

of the crowd under informational frictions.
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1 Introduction

Since its inception in the arts and creativity-based industries (e.g., recorded music, film,

video games), crowdfunding has quickly become a mainstream source of capital for en-

trepreneurs. In the span of a few years, its total annual volume has reached a whopping 34.4

billion USD globally at the dawn of 2017. It has surpassed the market size for angel funds in

2015, and the World Bank Report estimates that global investment through crowdfunding

will reach $93 billion in 2025.1 The US deregulation also passed the law to allow non-

accredited investors to join equity-based crowdfunding, further fueling the development.2

What is more, with the rise of initial coin offerings, alternative corporate crowdfunding

emerges, with over two billion dollars raised in the US in the first half of 2017. In Appendix

A, we provide two examples from well-known crowdfunding platforms.

While early news articles laud mitigation of financial constraints as the main reason for

crowdfunding, recent empirical studies provide convincing evidence that entrepreneurs use

crowdfunding as an information aggregation mechanism (Xu (2017) and Viotto da Cruz

(2016)). For example, Mollick and Kuppuswamy (2014) find in a comprehensive survey of

entrepreneurs on Kickstarter that learning about demand to be the single most important

benefit or motive for crowdfunding. Reduction of search and matching online costs through

the Internet, which in turn allows divisibility of funding and low communication costs, fa-

cilitates greater outreach, decentralized participation, timely disclosure and monitoring, and

information aggregation. As such, it is generally recognized that the key advantage of crowd-

funding platforms lies in aggregating information and harnessing the wisdom from the crowd,

1http : //www.infodev.org/infodev − files/wbcrowdfundingreport− v12.pdf
2On April 5, 2012, President Obama signed into law the Jumpstart Our Business Startups (JOBS) Act.

Adding to then extant donation and reward based crowdfunding platforms, the JOBS Act Title III legalized
crowdfunding for equity by relaxing various requirements concerning the sale of securities in May 2016.
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in addition to financing.3

Importantly, crowdfunding exhibit two salient features in the process of fundraising and

information aggregation. First, potential backers often randomly chance upon crowdfunding

websites or products within the window of offering. Investors making decisions later can thus

infer from earlier investors, or at least observe how well an offering has sold to date, or sold

relative to offerings undertaken in the past. Second, the most common type of crowdfunding

scheme involves an “all-or-nothing” (AoN) implementation where the entrepreneur sets a

target threshold for fundraising and gets the capital if and only if the target is reached

(Chemla and Tinn (2016)).4 The Crowdfund Act also indicates that AoN feature will likely

be mandated.5 How do sequential sales and AoN target affect information aggregation and

financing? Do they lead to underpricing and inefficient information aggregation as in classical

information cascade models? Do they give crowdfunding an edge over traditional forms of

financing?

To answer these questions, we incorporate information aggregation from diverse investors

and the AoN feature into a standard model of sequential sales and dynamic learning, and

characterize equilibrium pricing, optimal AoN targets, and information production. We

find that the simple addition of AoN alters many important results from extant literature

on information cascades. In particular, AoN leads to uni-directional cascades in which

investors rationally ignore private signals and imitate preceding investors only if the preceding

3 In fact, SEC also recognizes in its final rule of regulating crowdfunding that “individuals interested in
the crowdfunding campaign members of the ‘crowd’fund the campaign based on the collective ‘wisdom of
the crowd’ ” (Li (2017) and 17 CFR Parts 200, 227, 232, 239, 240, 249, 269, 274).

4Take Kickstarter, for example. The entrepreneur is typically asked to provide the following pieces of
information: (1) a description of the reward to the consumer, typically the entrepreneur’s final product; (2)
a pledge level ; (3) a target level. The crowdfunding campaign lasts typically for a fixed period of time –
usually 30 days. During the campaign, Kickstarter provides information on the aggregate level of pledges,
therefore a supporter can condition his decision based on previous consumers actions.

5Because intermediaries need to ensure that all offering proceeds are only provided to the issuer when
the aggregate capital raised from all investors is equal to or greater than a target offering amount, and allow
all investors to cancel their commitments to invest, as the Commission shall, by rule, determine appropriate
(Sec. 4A.a.7). See http: // beta.congress .gov / bill / 112th- congress / senate- bill / 2190 / text.
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investors decide to invest. Consequently, an entrepreneur prices issuance more aggressively,

and fundraising may succeed rapidly but never fails rapidly. Yet information production

becomes more efficient, especially with a large crowd of investors, leading to more successes

of good projects and failures of bad projects, and more generally a better harnessing of the

wisdom of the crowd under informational frictions.

Specifically, we build on the framework of Bikhchandani, Hirshleifer, and Welch (1992)

and Welch (1992): an entrepreneur approaches sequentially N investors who choose to sup-

port or reject the entrepreneur’s startup. Supporters pay a fixed price pre-determined by

the entrepreneur and gets a payoff normalized to one if the project is good. All agents are

risk-neutral and have a common prior on the project’s quality. Investors receive private,

informative signals, and observe the decisions of preceding investors. Deviating from the

standard setup, the entrepreneur also decides on AoN target—supporters only pay the price

and enjoy the project payoff if the fundraising reaches a target number of supporters.

We show that in equilibrium the aggregation of private information only stops upon an

UP cascade, in which the public Bayesian posterior belief is so positive that investors always

support the project regardless of their private signals. The intuition is that with AoN,

investors are encouraged to invest even when the aggregated information is not good. In

particular, investors with positive private signals always find it optimal to support because

they only pay the price when either there is an UP cascade later or the total number of good

observations reaches the AoN target, both suggesting a high posterior on the project’s quality.

Therefore, DOWN cascades do not occur because they are all interrupted by investors with

positive signals who do not care about DOWN cascades before AoN is reached. After AoN

is reached, the situation returns to the standard cascade setting, with the caveat that the

entrepreneur endogenously determines both price and AoN so that in equilibrium no DOWN
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cascade occurs, as opposed to setting price alone to avoid DOWN cascade as in Welch

(1992). That said, investors with negative private signals are reluctant to support because

in equilibrium their actions may be misinterpreted as positive signals, resulting in either

a too-early UP cascade or reaching the AoN target without enough number of positive

signals, both implying a not-high-enough posterior on the project’s quality. Taking this

concern of regretting supporting a project into consideration, the entrepreneur optimally

sets AoN targets to completely exclude the possibility of DOWN cascades. Apparently,

without DOWN cascades which stop private information aggregation, good projects are

financed almost surely when the crowd base N is very large.

The exclusion of DOWN cascades has important implications on the availability of fi-

nancing. In standard financial market models with information cascades, the feasible price

range is limited because the price must be lower than the posterior of the first investor

with a positive signal to prevent an early DOWN cascade. This limited price range makes

it impossible to finance costly projects with potentially high qualities. With AoN target,

entrepreneur can charge a sufficiently high price to cover the project implementation cost

without worrying about DOWN cascades. Uni-directional cascades thus enlarge the feasible

pricing range for fundraising. As a result, crowdfunding and the like can lead to financing of

projects that would not have been funded by centralized experts, consistent with empirical

findings in Mollick and Nanda (2015).6

The exclusion of DOWN cascades also affects the optimal pricing. In the standard

information cascade setting, Welch (1992) shows that the entrepreneur endogenously charges

a low price to induce an UP cascade from the very beginning, preventing the potential arrival

6Mollick and Nanda (2015) find that of the projects where there is no agreement, the crowd is much more
likely to have funded a project that the judge did not like than the reverse. Around 75% of the projects
where there is a disagreement are ones where the crowd funded a project but the expert would not have
funded it. This is consistent with uni-directional cascades.
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of DOWN cascades. This underpricing thus destroys information aggregation in financial

market because information cascades start very early. Our model demonstrates that AoN

provides the entrepreneur an additional tool to avoid DOWN cascades. On the one hand,

a higher price increases the profit the entrepreneur collects from each supporting investor.

On the other hand, high price sets a higher bar for implementation and associated UP

cascades, resulting a smaller chances of project implementation and the delay of UP cascades.

Since the delay of UP cascade is less costly given a large investor base, the entrepreneur

facing a large base of potential investors will charge a higher price for issuance, and the

information aggregation continues until an UP cascade arrives. Uni-directional cascades thus

reduces underpricing, and partially restores information aggregation by avoiding information

cascades from the very beginning.

By aggregating information before investment is sunk, crowdfunding platforms adds an

option value to experimentation, which can facilitate entrepreneurial entry and innovation

(Manso (2016)). In a sense, pre-selling through crowdfunding platforms can be viewed as

credible surveys on consumer demand. Chemla and Tinn (2016) find that even for a failed

crowdfunding, because the target is higher than the optimal investment threshold, the firm

may still invest. Moreover, more successful at crowdfunding stage typically leads to greater

success later for product implementation and future performance (Xu (2017)).

While the recent rise of crowdfunding certainly motivates our study, we note that aggre-

gating dispersed information under frictions has been prevalent in finance and economics.

The discussion of financial systems for aggregating information dates back to Hayek (1945).

Bond, Edmans, and Goldstein (2012) survey recent contributions related to the informa-

tional role of market prices for real decisions. One important and oft-discussed example is

IPO book-building that aggregates information from investors to price the shares (e.g., Rit-
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ter and Welch (2002)). With limited distribution channels by investment banks, it takes the

underwriter times to approach interested investors, who are typically institutions that do not

communicate amongst one another. Strong initial sales encourage subsequent support while

slow initial sales discourage subsequent investing. During an IPO book building process,

the issuer may decide to not continue with its proposed offering of securities if he observes a

poor investor interest. IPO book-building is therefore also characterized by sequential arrival

and AoN. In both Internet-based crowdfunding and IPO, there is no market for investors to

trade, and prices are fixed by entrepreneurs or the underwriter with evolving quantities of

financing in the process. We show that the introduction of explicit or implicit AoN target

substantially changes equilibrium outcomes. In particular, issuance is less under-priced, and

as we move from smaller investor base such as venture financing, to intermediate investor

base such as IPO bookbuilding, to large investor base such as Internet-based crowdfund-

ing, the issuance becomes more and more overpriced (less underpriced) relative to the prior

average project quality.

Beyond Internet-based crowdfunding and IPO book building, our findings also shed light

on other situations where decisions are made sequentially with AoN target. For example,

in many elections a candidate is only voted into the office if the number of votes passes a

threshold. In initial coin offerings, the upside speculation will only come to realize if there are

enough ICOs or wide range users so that the government would not shut down such markets.

Disclosure, accounting, and reporting practices may exhibit similar features. Scharfstein

and Stein (1990) argue that managers imitate the investment decisions of other managers

to appear to be informed. If new attempts have no cost upon failure, but can benefit the

firms if there is a critical mass that triggers regulatory changes, then it is essentially an

AoN implementation. Also defined by these features is the provision-point mechanism, also
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known as assurance contract or crowdaction, which solves a classic coordination and free-

riding issue in the provision of public goods (e.g., Bagnoli and Lipman (1989)). Finally, to

curb informational cascades in bank runs, an AoN measure could be explored in which no

one can withdraw if the total withdrawal exceeds certain thresholds.

Literature

Our paper foremost relates to the large literature on information cascades, social learning,

and rational herding. Bikhchandani, Hirshleifer, and Welch (1998) and Chamley (2004)

provide comprehensive surveys. Our model is largely built on Bikhchandani, Hirshleifer,

and Welch (1992) which discusses informational cascade as a general phenomenon. Welch

(1992) relates information cascade to IPO underpricing, and serves as a natural benchmark

for our model implications on pricing. Studies such as Anderson and Holt (1997), Çelen

and Kariv (2004), and Hung and Plott (2001) provide experimental evidence for information

cascades. We add to the literature by introducing AoN into sequential sales and learning, and

show that the resulting directional cascades reduces underpricing, reduces the detriments of

information cascades, and facilitate financing and harnessing the wisdom of the crowd.

Related are Guarino, Harmgart, and Huck (2011) and Herrera and Hörner (2013) that

consider information cascades when only one of the binary actions is observable, and either

the agents do not know their position or they have Poisson arrivals. While Herrera and

Hörner (2013) find under certain signal distributions welfare could improve over that in

Bikhchandani, Hirshleifer, and Welch (1992) and Guarino, Harmgart, and Huck (2011) show

cascades only occur in one direction, they do not consider endogenous pricing. Moreover,

they compare equilibrium outcomes across two exogenous environments, whereas we study

the consequence of endogenous AoN under the standard cascade setting.
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The paper also adds to an emerging literature on crowdfunding. Agrawal, Catalini, and

Goldfarb (2014) comment on the basic patterns and economic tradeoffs of crowdfunding.

Belleflamme, Lambert, and Schwienbacher (2014) provides an early theoretical comparison

of reward-based and equity-based crowdfunding, and shows the former is better for and

only for small initial capital requirements. Strausz (2017) and Chemla and Tinn (2016)

analyze demand uncertainty and moral hazard, and find that AoN is crucial in mitigating

moral hazard, and Pareto-dominates the alternative “keep-it-all” (KiA) mechanism. Chang

(2016) shows under common-value assumptions AoN generates more profit, because AoN

makes the expected payments positively correlated with values, reducing information rents

the entrepreneur pays, reminiscent of the linkage principle (Milgrom and Weber (1982)).

Moreover, Cumming, Leboeuf, and Schwienbacher (2014) and Lau (2013, 2015) find that

AoN performs better than KiA based on comparison between the two largest crowdfunding

platforms, Kickcstarter and Indiegogo, and by comparing projects within Indiegogo. Like

Strausz (2017), Ellman and Hurkens (2015) discuss optimal crowdfunding design, in the

absence of moral hazard, but with a focus on price discrimination and demand uncertainty.

Finally, Li (2017) similarly examines contract designs that harness the wisdom of the crowd

and find profit-sharing to be optimal. Instead of introducing moral hazard or financial

constraint, or derives optimal designs in static settings, we focus on pricing and information

production, especially under endogenous AoN arrangements and with dynamic learning.

Empirically evidence on harnessing the wisdom of the crowd and on information cascades

abound. Mollick and Nanda (2015) find significant agreement between the funding decisions

of crowds and experts, and find no qualitative or quantitative differences in the long-term

outcomes of projects selected by the two groups. Agrawal, Catalini, and Goldfarb (2011)

finds suggestive empirical evidence of funding propensity increasing with accumulated cap-
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ital on Sellaband, an Amsterdam based music-only platform started in 2006. Zhang and

Liu (2012) documents rational herding on P2P lending on Prosper.com. Burtch, Ghose, and

Wattal (2013) examine social influence in a crowd-funded marketplace for online journalism

projects, and demonstrate that the decisions of others provide an informative signal of qual-

ity. Xu (2017) and Viotto da Cruz (2016) demonstrate the wisdom of the crowd benefits

entrepreneurs’ ex post decisions and real option exercises. Our paper complements these

studies by providing a formal framework to rationalize these phenomena.

Given our focus on financing efficiency, pricing efficiency, and informational efficiency,

closely related is Brown and Davies (2017) which shows that when investors make deci-

sions simultaneously, an AoN leads to loser’s blessing, and scarce profits create a winner’s

curse, both adversely affecting financing efficiency for crowdfunding. We complement by

endogenizing AoN target and discussing the resulting gains in informational efficiency as

well as financing efficiency, all relative to the standard dynamic information-cascade bench-

mark. Also closely related is Hakenes and Schlegel (2014) which, along the same line, argues

that endogenous loan rates and AoN targets encourage information acquisition by individ-

ual households in lending-based crowdfunding, and enable more good projects to receive

financing. We focus on information aggregation and observational learning instead of in-

vestors’ costly information acquisition. Moreover, we differ from these studies in our focus

on dynamic learning and sequential investment instead of simultaneous investment games.

Whereas those studies discuss the loss and gain in efficiency relative to the standard static

auction benchmark, our setup allows us to uncover the benefits of setting AoN in a dynamic

environment, in a spirit akin to how commitment helps improve informational efficiency in

Bagnoli and Lipman (1989) and Bond and Goldstein (2015).

Our paper is also broadly related to innovation and entrepreneurial finance. Startup
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firms receive venture funding often to experiment and uncover more information about the

project’s viability and future profitability (Gompers and Lerner (2004) and Kerr, Nanda, and

Rhodes-Kropf (2014)). To the extent that such information can be gleaned from consumer

surveys or aggregated from crowds, the entrepreneur can potentially reduce experimenta-

tion or learning costs. Moreover, crowdfunding arguably reduces the barrier to entry for

entrepreneurs. Yet it may not select or monitor projects as well as VC does (Gompers,

Gornall, Kaplan, and Strebulaev (2016) show that VCs mainly add value through selection).

It thus serves as a complement to the traditional venture capital (e.g., Chemla and Tinn

(2016)). Abrams (2017) document initial empirical evidence on how the US securities cr-

wodfunding market provides a new way to finance quality startups. We add to the literature

by showing how AoN rules commonly observed in crowdfunding help mitigate inefficiencies

typically associated with information cascades, therefore further demonstrating the benefits

and costs of these innovations in entrepreneurial financing and information aggregation from

dispersed investors and consumers.

2 A Model of Directional Cascades

2.1 Setup

Consider an entrepreneur deciding whether to press forward with a startup project. He

visits a sequence of investors i = 1, 2, . . . , N , each can potentially support or reject the

project. The action of investor i is Ai ∈ {S,R}, where S denotes a support and R a

rejection. If the project is funded eventually, then every supporting investor contributes a

predetermined amount of capital m to the entrepreneur, and receives the benefit V , which
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can be either 0 or 1.7

All agents including the entrepreneur are rational, risk-neutral, and share the same prior

that the project type can be either V = 0 and V = 1 with equal probability.8 Each investor

i observes one conditionally independent private signal Xi ∈ {H,L}. Signals are informative

in the following sense:

Pr(Xi = H|V = 1) = Pr(Xi = L|V = 0) = p ∈ (
1

2
, 1); (1)

Pr(Xi = L|V = 1) = Pr(Xi = H|V = 0) = q ≡ (1− p) ∈ (0,
1

2
). (2)

We depart from the literature by incorporating the observed “all-or-nothing” (AoN)

scheme into this setup: the entrepreneur receives “all” if the campaign succeeds and “noth-

ing” if it fails to meet a pre-specified target. In other words, before investors make investment

decisions, the entrepreneur determines the amount of each contribution m and an AoN tar-

get TN ; the proposal is implemented if and only if more than TN investors support. In the

baseline, we assume the entrepreneur commits to abandoning the project if there are too few

investors willing to contribute. m is essentially the price investors all pay—in the case of

IPO issuance, the SEC bans variable-price sales; in the case of equity crowdfunding, equity

prices are also uniform.

In addition to mitigating moral hazard and augmenting profit (Strausz (2017) and Chang

(2016)), another common justification for AoN is that there is a minimum efficient scale for

7For crowdfunding, we are not distinguishing equity-based vs reward-based platforms. It is natural to
interpret our model as equity-based crowdfunding, in line with IPO book building. However, for reward-based
and donation-based crowdfunding, as long as investors are learning some common component of product
quality, our results apply. Even though many prominent examples of crowdfunding such as Kickstarter
are reward-based, Abrams (2017) documents that as of November 12th, 2016, the SEC has approved 21
platforms for security-based crowdfunding and there has been 146 security issues totaling over $13.6 million
in funding through 17,000 distinct investments.

8In a typical crowdfunding project, each individuals contribution is small, at least relative to his or her
wealth, thus there is little wealth effect and investors are locally risk-neutral; IPO book building involves
institutional investors who can be treated as risk-neural.
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the project, which is equivalent to requiring mTN passing some threshold. This is nested

in our interpretation as the entrepreneur sets m and TN to maximize profit. The order of

investors is exogenous and is known to all.9 This is equivalent to observing both supporting

and rejecting actions of previous investors, a standard assumption in the literature on infor-

mation cascades. In other words, when investor i makes her decision, she observes her own

private signal Xi and decisions made by all those ahead of her, that is, {A1, A2, . . . , Ai−1}.

In the application in crowdfunding, this information set is equivalent to observing fund

raised to-date (and time) and knowing the starting time of fundraising and the investor

arrival rate. Evidence that funders rely heavily on accumulated capital as a signal of quality

is abundant (Agrawal, Catalini, and Goldfarb (2011); Zhang and Liu (2012), and Burtch,

Ghose, and Wattal (2013)). Investors Bayesian update their beliefs using their private infor-

mation and inferences from the observed actions of their predecessors in the sequence. Let

Hi ≡ {A1, A2 . . . , Ai} be the action history till investor i, and NS be the total number of

supporting investors. Investor i’s problem is:

max
Ai

[E (V |Xi, Hi−1, NS ≥ TN)−m]1{Ai=S}, (3)

where 1{Ai=S} is the indicator function for supporting. If E (V |Xi, Hi−1, NS ≥ TN) > m, an

investor chooses Ai = S . When E (V |Xi, Hi−1, NS ≥ TN) = m, we assume that:

Assumption 1 (Tie-breaking). When indifferent between supporting and rejecting, an in-

vestor supports if the AoN target is possible to reach (positive probability), and rejects oth-

erwise.

9While crowdfunding in reality may involve endogenous orders of investors, our abstract and simplified
setup allows us to relate and compare to the large literature on information cascades which typically has
exogenous orders of investors. Louis (2011) similarly treats crowdfunding as involving exogenous priorities
of investment opportunities, but instead of observing actions and learning dynamically, investors invest
simultaneously under constraint of aggregate investment.

12



This assumption states that investors, whenever indifferent in terms of payoff consid-

eration, supports the project if it is still possible to reach the target threshold TN(m). It

is natural because the entrepreneur can always lower m by an arbitrarily small amount to

induce the contribution.

Let ν be the per contribution cost for the entrepreneur. In the context of reward-based

crowd-funding, this could be the production cost of each reward product. In the IPO

book building process, ν can be interpreted as the issuer’s share reservation value. The

entrepreneur chooses price m and AoN target TN to solve the following problem:

max
m,TN

π(m,TN , N) = E[(m− ν)NS1{NS≥TN}], (4)

where 1{NS≥TN} is the indicator function of funding the project. The entrepreneur tries to

maximize his expected profit from collecting contributions from investors. For simplicity we

assume ν = 0 in our baseline model. We revisit the case of ν > 0 in section 4.

2.2 Equilibrium

We use the concept of perfect Bayesian Nash equilibrium (PBNE), which is defined as:

Definition 1. An equilibrium consists of entrepreneur’s choice of {m∗, T ∗N}, investment

strategies for investors {A∗i (Xi, Hi−1,m
∗, T ∗N)}i=1,2...,N such that:

1. For each investor i, given the required contribution m∗ and T ∗N , associated T ∗N and

other investors’ investment strategies {A∗j(Xj, Hj−1,m
∗, T ∗N)}j=1,2,...,i−1,i+1,...,N , invest-

ment strategy A∗i (Xi, Hi−1,m
∗, T ∗N) solves her optimal investment problem:

A∗i ∈ argmax [E (V −m|Xi, Hi−1, NS ≥ TN)]1Ai=Y ; (5)
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2. Given investment strategies {A∗i (Xi, Hi−1,m
∗, T ∗N)}i=1,2...,N , m∗ and T ∗N solve entrepreneur’s

profit maximization problem:

{m∗, T ∗N} ∈ argmax π(m,TN , N). (6)

2.3 Solution

We start our analysis with the posterior dynamics. The following lemma characterizes

the posterior belief given a series of signals.

Lemma 1. Given a series of signals X ≡ {X1, X2, . . . , Xn}, the ratio of the posterior

probability of V = 1 to that of V = 0 is

Pr(V = 1|X)

Pr(V = 0|X)
=
pk

qk
,

where k = #of H signals−#of L signals.

Proof. See the Appendix.

Lemma 1 states that the posterior belief of project type only depends on the difference

between numbers of H and L signals so far, but not on the total number of observations.

This result suggests that observing one H and one L signals does not change the posterior

belief. In other words, opposing H and L signals cancel each other and have no effect in

forming posterior, a convenient feature also in Bikhchandani, Hirshleifer, and Welch (1992).

Given Lemma 1, an investor’s expected project cash-flow conditional on observing k more

H signals is then,

E(V |k more H signals) =
pk

pk + qk
. (7)
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It is apparent that the expected project payoff is strictly monotonically increasing in k.

When investors act regardless of their private signals, the market fails to aggregate dis-

persed information. Our notion of informational cascade follows the literature standard (e.g.

Bikhchandani, Hirshleifer, and Welch (1992)).

Definition 2. An information cascade occurs if a subsequent investor’s action does not

depend on her private information signal. An UP cascade occurs if a subsequent investor

supports the project regardless of her private signal. A DOWN cascade occurs if she rejects

the project regardless of her private signal.

Notice that we have taken the convention of calling it a cascade as long as the NEXT

investor ignores the private information, even though the current investor may still use

private signal. This is immaterial for our theory but simplifies exposition in the proof. In

standard models of informational cascades, both UP and DOWN cascades are possible. If

a few early investors observe H signals, their contributions may push the posterior so high

that the project remains attractive even with a private L signal. Similarly, a series of L

signals may doom the offering. An early preponderance towards support or rejection causes

all subsequent individuals to ignore their private signals, which thus are never reflected in

the public pool of knowledge. The first main result in our paper is to show that with the

AoN feature, there exists an equilibrium such that only UP cascades may exist.

Proposition 1. There exists an equilibrium such that:

1. Given the investment contribution (price) m∗ ∈ (0, 1), the corresponding AoN target

T ∗N ≤ N satisfies:

E(V |T ∗N , N) ≤ m∗ < E(V |T ∗N + 1, N), (8)

where E(V |x,N) is the posterior mean of V given there are x number of H signals out
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of N observations;

2. Investors with signal H always support the project;

3. Investor i with signal L contributes if and only if:

E(V |k − 1 more H signals) ≥ m∗, (9)

where k is difference between the numbers of supporting and rejecting predecessors

before investor i.

Proof. See the Appendix.

Proposition 1 states that in the equilibrium the optimal target leaves investors no ex post

regret. This result roots from the fact that any deviation from the optimal target creates

friction in information aggregation and hence reduces the investment commitments. The

entrepreneur also chooses the AoN target so as to leave no money on the table. If the target

is set so high that investors would support even below the target, the the entrepreneur can

increase the price to extract more rent.

Let mk ≡ E(V |k more H signals). The proof for Proposition 1 suggests both the possi-

bility and arrival time of cascades, as summarized in the following corollary.

Corollary 1. In the equilibrium characterized in Proposition 1, there would be no DOWN

cascades. If m ∈ (mk−1,mk], an UP cascade starts whenever there are k + 1 more investors

supporting rather than rejecting.

One can interpret UP cascades as the source of type I error in information aggregation

since it may falsely accept the project when it is bad. On the other hand, DOWN cascades

introduce type II error, rejecting the proposal when it is actually good. Intuitively, with the
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AoN target, rejection cascades do not occur and the type II error completely disappears if

the aggregated information is precise enough, because the endogenous price and AoN target

always ensure good projects are financed when N is large.

Proposition 2. As N → ∞, a good project with V = 1 is financed almost surely with an

UP-cascade.

Proof. See the Appendix.

To the extent that Internet crowdfunding allows entrepreneurs to reach a large population of

investors, good projects are always financed. We note that with limited number of investors

such as in the case of traditional intermediaries or angel investors, good projects can fail.

We thus have demonstrated one key benefit of crowdfunding.

Next, we examine the informational environment in such an up-cascaded equilibrium,

and its pricing implications.

3 Pricing Implication

We start our analysis by characterizing the optimal price in the standard information

cascade model (without AoN) as a benchmark (most analysis from Welch (1992) but in our

framework). Pricing implications of informational cascade is important because underpricing

or overpricing may affect the success or failure of the issuance, resulting in an important and

direct impact on the real economy. This is especially salient in the case of IPO with limited

distribution channels of investment banks (Welch (1992)).

For N large enough, the complete aggregation of investors signals gives the first-best

informational environment. The main friction is that it is costly to aggregate information.

The key innovation of crowdfunding is then the low-cost way (through the internet) to reach
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out to a greater crowd. This is also a key function performed by underwriting investment

banks. Our focus is therefore on cascade with and without AoN, not on the comparison

between the full information benchmark and the up-cascaded equilibrium under the same

N .

3.1 Standard Cascades without AoN Target

If there is no AoN, then for each investor, her payoffs do not depend on what later

investors do. Thus, the equilibrium is essentially the same as the one characterized in

Bikhchandani, Hirshleifer, and Welch (1992) and Welch (1992). That is, each investor i

chooses to support if and only if

E(V |Xi, Hi−1) ≥ m. (10)

In this equilibrium, both UP and Down cascades may occur. The aggregation of public

information stops once one cascade arrives. As discussed in Bikhchandani, Hirshleifer, and

Welch (1992), the impact of cascades largely depends on the private information precision.

If the information is precise, then cascades would not be a big concern since a cascade

only occurs when the aggregated public information is sufficiently informative to dominate

one’s private signal, suggesting a high probability of correct cascades. When the private

signal is noisy, cascades become a serious concern since a slightly more informative public

pool of knowledge is enough to cause individuals to disregard their private signals. The

following proposition shows that without AoN target, the contribution is under-priced when

the precision of private signals is low.

Lemma 2. The entrepreneur always charges m ≤ p. When p ≤ 3
4

+ 1
4
(3

1
3 − 3

2
3 ), the optimal
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contribution is m∗ = 1− p < 1
2

= E(V ).

Proof. See the Appendix.

The lemma is basically a restatement of the underpricing result in Welch (1992), especially

Theorem 5. The first pricing upper bound comes from the concern for potential DOWN

cascades. If entrepreneur charges m > p, then even with a H signal, the first investor choose

rejection and so does every subsequent investor, leading to a DOWN cascade starts at the

very beginning, which yields 0 benefit for sure.

The second result concerns optimal pricing when the individual signal is not very precise

and cascades are a relevant concern. UP and DOWN cascades, even though they both reduce

the information aggregation among investors, affect the entrepreneur’s profit asymmetrically.

While the entrepreneur benefited from UP cascades by attracting contributions from late

investors with L signals, he is concerned with DOWN cascades since a few early rejections

may doom the offering. When the private information precision is low, the concern of DOWN

cascades pushes down the price to the level such that given the low price the UP cascade

starts at the very beginning with probability 1. Because m∗ < E[V ], the optimal pricing

entails underpricing ex ante so that the first investor finds it attractive even with a L signal.

To be clear, depending on the true project quality, we still have overpricing (if V = 0) ex

post.

3.2 Pricing with AoN Target

Now we move to the optimal pricing problem with the AoN target TN(m). This is

conceptually different from the optimal pricing problem in the previous section because with

AoN there would be no DOWN cascade in the equilibrium. As we shown in this section, the

AoN target changes both pricing upper bound and the underpricing results.
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Lemma 1 and equation (7) show that the posterior only depends on the difference between

numbers of H and L signals. If the price is mk−1, then an UP cascade starts once there are k

more H signals. Since each investor will observe either H or L signal and in the equilibrium

her decision perfectly reveals her private signal before an UP cascade starts, the arrival of an

UP cascade is equivalent to the first passage time of a one-dimension biased random walk.

The following lemma lays the foundation for our analysis on the distribution of UP-cascades’

arrival time.

Lemma 3 (Hitting Time Theorem). For a random walk starting at k ≥ 1 with i.i.d. steps

{Yi}∞i=1 satisfying Yi ≥ −1 almost surely, the distribution of the stopping time τ0 = inf{n :

Sn = k +
∑n

i=1 Yi} is given by

Pr(τ0 = n) =
k

n
Pr(Sn = 0). (11)

Proof. See Van der Hofstad and Keane (2008).

To characterize the distribution of UP cascades arrival time, let ϕk,i be the probability

that an UP cascade starts at investor i, then

Lemma 4. If the price m ∈ (mk−2,mk−1], then the probability that an UP cascade starts at

investor i is

ϕk,i =
k

i

 i

i+k
2

 (pq)
i−k
2
pk + qk

2
(12)

where  i

i+k
2

 =


i!

i+k
2

! i−k
2

!
if i ≥ k and k + i even;

0 otherwise.

(13)

Proof. See the Appendix.
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Since for any m ∈ (mk−1,mk], all investors make the same investment decisions, the

entrepreneur can always charge m = mk and receives a higher profit. Without loss of

generality, we focus our pricing analysis on m ∈ {m−1,m0, . . . ,mN}. We exclude cases for

k < −1 because m−1 = 1−p is low enough to induce an UP cascade from the very beginning

for sure.

Now we consider the optimal pricing. An UP cascade only occurs when the posterior

given another L signal is higher than m, and all subsequent investors support the project.

The project is eventually implemented once an UP cascade starts. On the other hand, for

any agent i ≤ N − 1, if the UP cascade has not started yet, then there is a strictly positive

possibility that the project will not be implemented. So a project is eventually funded if and

only if either 1) There is an UP cascade; or 2) Investor N supports the project and the total

number of supporting investors is exactly TN . In either cases, we can compute the profit

associated with m, as formalized in Proposition 3. But before going there, we illustrate

the two scenarios in Figure 1, which plots the difference between supporting investors and

rejecting investors when n investors have arrived. The figure also includes a sample path

that leads to funding failure because AoN target is not reached.

Proposition 3. When the price is m = m−1 = 1 − p, the entrepreneur’s expected profit is

(1 − p)N . More generally, given a price m = mk−1, k ∈ {1, 2, . . . , N}, the entrepreneur’s

expected profit is

π(mk−1, N) =


mk−1

N∑
i=k,k+2...

ϕk,i(N − i−k
2

) if k +N even;

mk−1

[
N−1∑

i=k,k+2...

ϕk,i(N − i−k
2

) +
1

p
ϕk,N+1(N − N−k

2
)

]
if k +N odd.

(14)

For each k ∈ {0, 1, 2, . . . }, there exists a finite positive integer N(k) such that for ∀ N ≥
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Figure 1: Evolution of Support-Reject Differential
Simulated paths for N = 40, p = 0.7, m∗ = m5 = 0.9673, and AoN target T ∗(N) = 22. Case 1 indicates
a path that crosses the cascade trigger k = 5 at the 26th investor and all subsequent investors support
regardless of their private signal; case 2 indicates a path with no cascade, but the project is still funded by
the end of the fundraising; case 3 indicates a path where AoN target is not reached and the project is not
funded. The orange shaded region above the AoN line indicates that the project is funded.

N(k), π(mk, N) > π(mk−1, N).

Proof. See the Appendix.

Proposition 3 gives an explicit characterization of entrepreneur’s expected profit as a function

of price mk and number of potential investors N . Figure 2 provides an illustration on how

the profit depends on m.

More importantly, the result on N(k) suggests that, different from Lemma 2, the optimal

price depends on the number of potential investors N . In the standard cascades models, a

DOWN cascade hurts the entrepreneur significantly because subsequent investors all reject.

The concern for DOWN cascades pushes down the optimal price, and can cause immediate

start of an UP cascade, independent of the number of investors because the decisions of later

investors have no impact on the first investor’s payoffs (Welch (1992)). With the AoN target,
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Figure 2: Optimal Pricing: An Illustration with N = 2000 and p = 0.55.

in the equilibrium there would be no DOWN cascades and one early rejection is not a big

concern since all investors with H signals would still support the project. Those supporting

investors may trigger an UP cascade later, especially when there are many potential investors

in the market. The following corollary shows the increasing trend of optimal price m∗ as the

number of potential investors N grows.

Corollary 2. For ∀ mk, there exists a a finite positive integer Nπ(mk) such that for ∀ N ≥

Nπ(mk), m∗ > mk.

Proof. Let Nπ(mk) = max{N(0), N(1), . . . , N(k), N(k + 1)}. Then for ∀ N ≥ Nπ(mk),

π(mk+1, N) > π(mk, N) > · · · > π(m−1, N). So m∗ ≥ mk+1 > mk.

This corollary has two implications novel to the literature: first, as we reach out to more

and more investors through technological innovations such as the Internet, the entrepreneur

can charge a higher price; second, there would be less underpricing but more overpricing as

N becomes big. The left panel in Figure 3 shows the optimal starting point of UP cascades
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(kth investor) when N differs, and right panel plots the optimal pricing as a function of N .

We note that m > E[V ] in these cases.

Figure 3: Cascades and optimal prices as N increases

Since for any finite integer N ≥ 2, m∗(N) ∈ {−1, 0, 1, . . . , N}. Corollary 2 implies

that m∗ shows an increasing trend. Since mk is a monotonic increasing function in k and

lim
k↑∞

mk = 1, it is straightforward to see that

Corollary 3. limN→∞m
∗(N) = 1

That is to say, when there is a large base of potential investors, the optimal price approaches

the highest possible value, leading to overpricing rather than the underpricing found in IPOs

when N is relatively small (Welch (1992)).

4 Wisdom of the Crowd

This section discusses how AoN scheme fundamentally changes the feasibility of harness-

ing the wisdom of the crowd, and the resulting informational environment. We also allow the

entrepreneur to carry out the project even if the target is missed, or to give up the project

even if the target is met.
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4.1 Feasibility of Fundraising and Information Aggregation

From Lemma 2, we see that there is a pricing upper bound in order for the fundraising or

offering to be feasible. This bound becomes a serious concern when the cost ν is non-zero. In

particular, when ν is too high, traditional cascade models predict a failure (rejection cascade

for sure) while in our model the entrepreneur can still charge a high price and is able to

implement the project when aggregated information is good.

Proposition 4. Without AoN, no project with ν > p is financed and information aggregation

is infeasible; committing to an AoN target enables fundraising and information aggregation

even when ν > p.

Because of DOWN cascades, investors certainly do not finance any project with ν > p. In

such cases, not only do we fail to raise financing, there is also no way the entrepreneur can

harness the wisdom of the crowd because no information is aggregated. This result roots

from the fact that the concern for DOWN cascades imposes an upper bound on possible

prices, and any project with a high cost will charge a high price and thus triggers a DOWN

cascade and financing failure for sure.

The exclusion of DOWN cascades therefore has an important impact on the pricing upper

bound, and hence the availability of finance. With AoN target, any price m < 1 is possible

and there would be a strictly positive possibility that the project would be financed given

there is a large enough potential investor base. Moreover, from Proposition 2 we know

that the good type of project (V = 1) will be financed almost surely as the number of

investors goes to infinity. In this sense, AoN target drives the discrete jump in financing and

information aggregation feasibility.
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4.2 Harnessing the Wisdom

Even when the fundraising is feasible, it serves little for information aggregation in most

extant models of information cascade. For example, in Welch (1992), cascade always starts

from the very beginning, and no private signals are aggregated because once a cascade

starts, public information stops accumulating. Nor does the public pool of knowledge have

to be very informative to cause individuals to disregard their private signals. As soon as

the public pool becomes slightly more informative than the signal of a single individual,

individuals defer to the actions of predecessors and a cascade begins.

With AoN target, however, the downside risk is removed, and optimal pricing does not

necessarily result in information cascades from the very beginning (Lemma 4). Therefore,

as long as m∗ > 1 − p, the fundraising also aggregates some private information from the

investors, allowing us to harness the wisdom of the crowd to some extent.

What is more, from Lemma 4, the probability that a cascade is correct (UP cascade when

V = 1) is given by

Pr(V = 1|cascade at ith investor) =
pk

pk + qk
I{i≥k&k+i is even}

where k satisfies mk−1 < m ≤ mk−1. Because k is weakly increasing in the pricing m and the

optimal pricing is weakly increasing in N (Proposition 3), the following proposition ensues.

Proposition 5. A cascade starts weakly later with higher pricing m, and thus with a larger

crowd (larger N) when pricing is endogenous. The probability of a cascade being correct is

increasing in p, weakly increasing in the pricing m, and weakly increasing in N when pricing

is endogenous.

AoN reduces underpricing, which in turn delays cascade and increases the probability of
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correct cascades. More importantly, whereas N does not matter in standard cascade models,

AoN links the timing and correctness of cascades to the size of the crowd. With a large N

as is the case for Internet-based crowdfunding, information cascades has a less detrimental

effect, allowing better harnessing of the wisdom of the crowd.

Uni-directional cascade also means that offerings in the cascade model can fail whereas

in the baseline in Welch (1992), offerings never fail. This would help us explain why some

offerings fail occasionally and/or are withdrawn, without invoking insider information as

Welch (1992) did in his model extension. By allowing some projects , which are mostly bad

projects when N is large (Proposition 2), we put the wisdom of the crowd to use to increase

social welfare.

It should be noted that our findings complement rather than contradict those in Brown

and Davies (2017). In their setup, investors bid more aggressively because the project

is only implemented when the total investment reaches an exogenously given AoN target,

leading to “loser’s blessing” and failures of aggregating information from the crowd, relative

to standard auction benchmarks. We focus on sequential investments in the presence of

dynamic observational learning, and the gains in informational and financing efficiency are

all benchmarked to standard settings outlined in Section 3.1.

4.3 Entrepreneur’s Real Option

So far in our analysis we have required the entrepreneur to implement the project accord-

ing to the AoN target. In some cases in reality, especially when the entrepreneur also learns

about the project’s promise from crowdfunding (not knowing the true V in our model), he

commits to AoN in fundraising, but still holds the real option on how to use the capital

and information aggregated. For example, an entrepreneur successful on Kickstarter or In-
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digogo can still decide on the scale of the project and how much effort to put into developing

the product. On some crowdfunding platforms, the entrepreneur can decide whether to use

the capital raised explicitly or implicitly (by postponing product development indefinitely,

which results in refunding the investors). Xu (2017) and Viotto da Cruz (2016) provide

strong empirical evidence that the entrepreneur indeed use the information aggregated from

crowdfunding platforms for real decisions.

The real option embedded in the eventual investment often comes from the fact that

crowdfunding is one way to learn about aggregate demand, which is obvious in reward-

based platforms. Even for equity-based crowdfunding, investors reveals information on future

product demand and profit.

Similarly, in IPOs, firms successful at book-building may still occasionally withdraw and

those unsuccessful may still find alternative sources of public financing. An IPO’s initial

pricing and trading also generates valuable information and feedback for managers. For

example, van Bommel (2002) and Corwin and Schultz (2005) discuss information production

at IPO through choices on pricing and underwriting syndicates.

In our baseline model, the entrepreneur’s investment marginal cost ν is largely muted.

One could imagine that ν is significant or there is also a fixed cost of investment for the

entrepreneur. There could also be additional benefit to carrying out the project, such as

the entrepreneur’s private benefit of control or empire building. These forces distort the

entrepreneur’s ex post incentive on whether and how to implement the project. Other

factors such as marketing, network effect, etc. also play a role. Given that the eventual scale

of the project matters,10 cascade can also serve as a device for coordination conditional on

the project’s being good.

Specifically, V can be interpreted as a transformation of the aggregate demand, which

10Section E in Welch (1992) considers locally increasing returns to scale.
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could be high (V = 1) or low (V = 0). Suppose that after the crowdfunding, the entrepreneur

considers commercialization or abandoning the project (upon crowdfunding failure), and for

simplicity the commercialization or continuation decision pays V (after normalization), but

incurs an effort or reputation or monetary cost represented in reduced-form by I. Then the

entrepreneur’s expected payoff for the real option is

max {E[V − I|HN ], 0} (15)

recall HN is the entire crowdfunding history, including information on the total number of

supports out of N investors, and when an UP-cascade starts if there is one, etc. Even with a

successful crowdfunding, the entrepreneur may still choose to forgo commercialization if his

belief on V after crowdfunding is not sufficiently optimistic; likewise, despite crowdfunding

failure, the entrepreneur may continue pursuing the project. In fact, Xu (2017) documents

in a survey of 262 unfunded Kickstarter entrepreneurs that after failing, 33% continued as

planned. He also finds that a 50% increase in pledged amount leads to a 9% increase in the

probability of commercialization outside the crowdfunding platform.

Consistent with Xu (2017), one can show that the posterior of V is increasing in the

equilibrium crowdfund raised. It would be interesting to understand how the entrepreneur

designs AoN and pricing to not only maximize profit from the crowdfunding, but also increase

the real option value, which constitutes interesting future work.

5 Conclusion

Financial processes such as crowdfunding and IPO underwriting involve aggregating in-

formation from diverse investors, sequential sales, observational learning, and most inter-
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estingly, all-or-nothing (AoN) rules that contingent the financing upon achieving certain

fundraising targets. We incorporate these features into a classical model of information

cascade, and find that AoN leads to uni-directional cascades in which investors rationally

ignore private signals and imitate preceding investors only if the preceding investors decide

to invest. Consequently, an entrepreneur prices issuance more aggressively, and fundraising

may succeed rapidly but never fails rapidly. Information production also becomes more ef-

ficient, especially with a large crowd of investors, yielding more probable financing of good

projects, and the weeding-outs of bad projects that are absent in earlier models. More gen-

erally, endogenous pricing with AoN targets leads to greater financing feasibility and better

harnessing of the wisdom of the crowd under informational frictions.
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Appendix

A Crowdfunding Platforms

Figure 4: Example One: Kickstarter
Aside from all the details about the product, investor observes the target amount, fundraising start and end dates, pledged amount to date, and
number of backers. They can also see a timeline of updates to the project (when it starts, factory production progress, etc.)

A-1



Figure 5: Example Two: Crowdfunder
Aside from all the details about the company including the equity investment contract, the companys previous funding, key customers and partners,
and existing investors (only the VCs and the big players), investors also observe the target amount, fundraising start and end dates, reservation
amount to date, etc.
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B Derivations and Proofs

Proof of Lemma 1

Proof. Let kn be the difference of numbers of H and L signals till the nth observation. For the prior, k0 = 0,

and Pr(V=1)
Pr(V=0) = 0.5

0.5 = p0

q0 .

Suppose Pr(V=1)|X
Pr(V=0|X) = pkn

qkn
holds for n ≥ 0, then for n+ 1:

1. If Xn+1 = H, then kn+1 = kn + 1, and

Pr(V = 1|X)

Pr(V = 0|X)
=

Pr(Xn+1=H|V=1)Pr(V=1|X1,X2,...,Xn)
Pr(Xn+1=H)

Pr(Xn+1=H|V=0)Pr(V=0|X1,X2,...,Xn)
Pr(Xn+1=H)

=
Pr(Xn+1 = H|V = 1)pkn

Pr(Xn+1 = H|V = 0)pkn

=
pkn+1

qkn+1
;

2. Similarly, if Xn+1 = L, then kn+1 = kn − 1, and

Pr(V = 1|X)

Pr(V = 0|X)
=

Pr(Xn+1=L|V=1)Pr(V=1|X1,X2,...,Xn)
Pr(Xn+1=L)

Pr(Xn+1=L|V=0)Pr(V=0|X1,X2,...,Xn)
Pr(Xn+1=L)

=
Pr(Xn+1 = L|V = 1)pkn

Pr(Xn+1 = L|V = 0)pkn

=
pkn+1

qkn+1
;

So Pr(V=1|X)
Pr(V=0|X) = pkn+1

qkn+1
holds for n+ 1. The lemma follows by induction.

Proof of Proposition 1

Proof. The proof proceeds in two steps. We first show that the investment strategies in Proposition 1 is a

sub-game equilibrium for a chosen price m∗ and the corresponding AoN target T ∗N characterized by Equation

(8). We then show that for any possible m∗ in the equilibrium, the corresponding AoN target T ∗N charac-

terized by Equation (8) is optimal.

Step 1: Investor strategy with given AoN target

Given the price m∗ and the corresponding AoN target T ∗N characterized by Equation (8). Let km be the

minimal difference of numbers of H and L signals so that E(V |km more H signals) ≥ m∗. Without loss of

generality we only consider the cases when km ≤ N . It is straightforward to see that T ∗N − (N − T ∗N ) = km

when km +N is even and T ∗N − (N−T ∗N ) = km−1 when km +N is odd. An UP cascade starts once there are

km + 1 more H signals, because even if the investor currently making decision has private signal L, overall

there are still km more H signals, and the weakly undominated strategy is to support. When there is an UP

cascade, because all subsequent investors would support, there must be more than T ∗N investors supporting

the project and the AoN target is reached. If there is no UP cascade, the project will also be implemented
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when there are exactly T ∗N more supporting investors (if there are more than T ∗N supporting investors, then

an UP cascade (recall our definition) starts at the latest at investor N).

Now consider investor i ∈ {1, 2, . . . , N}, given investment strategies of other investors, if there is already

an UP cascade before her turn, then the project will be implemented for sure and the conditional expected

payoff given her private signal is weakly higher than E(V |km more H signals) ≥ m∗. Her optimal decision

is to support regardless of her private signal.

If there is no UP cascade yet and she chooses to support with a private H observation, then the project is

implemented either when there is an UP cascade later or when there is no cascade but exactly T ∗N supporting

investors.

1. When km+N is even, then with an UP cascade, the expected payoff is E(V |km + 1 more H signals)−
m∗ > 0. If there is no cascade later but exactly T ∗N supporting investors, the conditional expected

payoff given her private signal is E(V |T ∗N , N)−m∗ ≥ 0.

2. When km +N is odd, similar to the even case, the expected payoff is E(V |km + 1 more H signals)−
m∗ > 0 if an UP cascade arrives before investor N . Now consider the scenario when no UP cascade

has yet arrived at investor N−1 and the project is implemented in the end. Since T ∗N−(N−1−T ∗N ) =

km − 1 + 1 = km, if there are less than T ∗N supporting investors until investor N − 1, then there are

at most km − 2 more supporting investors and the project would not be implemented for sure. If

there are more than T ∗N supporting investors, then there must be an UP cascade, a contradiction.

Moreover, if investor N − 1 chooses rejection, then there must be km + 1 more supporting investors

at investor N − 2, suggesting an UP cascade. If no UP cascade has yet arrived at investor N − 1 and

the project is implemented in the end, then it must be the case that investor N − 1 supports and

there are exactly T ∗N supporting decisions from the first N − 1 investors. Conditional expected payoff

given her private signal is E(V |km more H signals)−m∗ ≥ 0. For investor N , of course she supports

if and only if her private signal is good.

Therefore it is optimal to support.

If there is no UP cascade yet and E(V |km − 1 more H signals) < m∗, and consider a deviation that she

chooses to support with a private L observation, then the project is implemented either when 1) There is

an Up cascade later or 2) There are exactly T ∗N supporting investors. In the first case, others interpret her

action as having H signal on equilibrium, the conditional expected project payoff given her private signal is

E(V |km + 1 more supporting investors) = E(V |km − 1 more H signals) < m∗, where the first expression is

the point of cascade start, and E(V |km − 1 more H signals) is the true value because the fact that she has L

means there are two less H than what others perceive in equilibrium. This is not a profitable action. Simi-

larly, in the second case, the conditional expected payoff given her private signal is E(V |T ∗N − 1, N)−m∗ < 0.

Therefore it is optimal to reject instead.

Step 2: Optimal AoN target

Notice that m∗ ≥ E(V |1 less H signal), since m∗ = E(V |1 less H signal) guarantees an UP cascade

from the very beginning and thus strictly dominates any m < E(V |1 less H signal). Let TN (m∗) be the

target that satisfies E(V |TN (m∗), N) ≤ m∗ < E(V |TN (m∗) + 1, N).

When m∗ = E(V |1 less H signal), the UP cascade starts from the first investor for sure, so any AoN

target T ∗N ≤ N is optimal.
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When m∗ > E(V |1 less H signal), and T ∗N = TN (m∗): Following the proof in step 1, the project will be

implemented whenever there is an UP cascade (that is to say, at some investors there are km + 1 more H

signals), or when no UP cascades occur and there are exactly T ∗N supporting investors in total.

When m∗ > E(V |1 less H signal), and T ∗N > TN (m∗): Since T ∗N ≥ TN (m∗) + 1, T ∗N − (N − T ∗N ) ≥
TN (m∗) + 1 − (N − TN (m∗) − 1) ≥ km + 1. Suppose all investors choose the same investment strategies

discussed in step 1. Because there would be an UP cascade once there are km + 1 more supporting investors,

if there are no less than T ∗N supporting investors in total, then there would always be an UP cascade.

That is to say, the project will be financed only when there is an UP cascade and the total number of

supporting investors is at least T ∗N . Similar to the discussion in step 1, it is optimal for investors to support

once an UP cascade starts. If there is no cascade yet and investor i chooses support, then the conditional

expected project payoff given her private H signal is at least E(V |km + 1 more supporting investors) =

E(V |km + 1 more H signals) > m∗, and the conditional expected project payoff given her private L signal is

E(V |km + 1 more supporting investors) = E(V |km − 1 more H signals) < m∗. So investor i finds it optimal

to choose support with a H observation and rejection with a L signal. Now consider the deviation to the

same m∗ but T ∗N = TN (m∗), each of the financing success scenario with UP cascades is still there, but the

entrepreneur’s strategy now strictly dominates T ∗N > TN (m∗) because it yields positive profit absent UP

cascade but with exactly TN (m∗) supporting investors.

Finally, we have the case of m∗ > E(V |1 less H signal), and T ∗N < TN (m∗), which is further divided

into two sub-cases:

1. m∗ > E(V |0 more H signals), and T ∗N < TN (m∗):

Similar to previous discussions, the project is implemented whenever there is an UP cascade before

the T ∗N th supporting decision. And investors choose the same investment decisions before the total

number of supporting investors reaches T ∗N . For the pivotal investor who makes the T ∗N th support

decision and all subsequent investors, because the project is implemented for sure if they invest, we

are back to the standard cascade models without AoN. Now we show that any T ∗N < TN (m∗) is

dominated by T ∗N + 1, using the following arguments.

(a) For any T ∗N < TN (m∗), let investor i be the T ∗N th investor observing a good signal. Then she

invests only if there are at least km − 1 more supporting actions than rejection actions before

her. If there are at least km more supporting actions than rejection actions before investor i,

then there must already be an UP cascade before the next investor, and thus the project can

also be implemented with T ∗N + 1 as the AoN target (note T ∗N < N) because the entrepreneur

profit is the same. Without loss of generality, we focus on the paths when there are exactly km

more H signals at investor i with an UP cascade.

(b) Given equation (8) and T ∗N < TN (m∗), it must be i ≤ N − 2 by the definition of TN (m∗).

Consider investor i + 1, if she observes a good signal, then in both T ∗N and T ∗N + 1 cases she

chooses support and the project would be implemented, and entrepreneur receives the same

profit. If investor i + 1 observes signal L, she rejects in both cases because including her own

signal, there are only km − 1 more H signals. Conditional on the rejection at investor i + 1,

investor i + 2 chooses support if and only if her signal is good in both cases. For the support

case the project would also be implemented with T ∗N + 1 target and entrepreneur receives the

same profit. However, when investor i+ 2 chooses rejection, it becomes a DOWN cascade and

A-5



the project would be abandoned for sure. When there are km − 1 more good signals before

investor i, and investors i, i + 1 and i + 2 observe H, L and L, respectively, we call this path

HLL, and it is the only path along which T ∗N target dominates T ∗N + 1 target.

(c) To show T ∗N + 1 target dominates T ∗N in expectation, it suffices to consider the path LHH,

which refers to the scenario that there are km − 1 more good signals before investor i, investors

i, i+ 1 and i+ 2 observe L, H and H, respectively. With T ∗N + 1, this path meets AoN target,

because investor i+1 with H signal invests, knowing that she only needs to pay if investor i+2,

or a subsequent investor also has H signal and supports; with T ∗N , investor i + 1 rejects even

with H because she is the T ∗N th investor and she has to pay if she supports, yet there are only

km − 1 more H signals (including hers). Conditional on there are km − 1 more good signals

before investor i, when km ≥ 1, the probability of LHH case is larger than the probability of

HLL. Also notice that HLL suggests a DOWN cascade at investor i+ 2, so the expected profit

of LHH is higher than the expected profit of HLL.

2. m∗ = E(V |0 more H signals) (which equals 1
2 in our setup) and T ∗N < TN (m∗):

Similar to the m∗ > E(V |0 more H signals) case, T ∗N target only dominates T ∗N + 1 target along

the HLL path. Let QT∗
N

be the event that there is no UP cascade yet and at the T ∗N th supporting

investor there are exactly equal numbers of supporting and rejecting investors (that is to say, the T ∗N th

supporting investor is the 2T ∗N th investor). Let U2T∗
N+1 be the event that the UP cascade arrives at

the 2T ∗N +1th investor. Event U2T∗
N+1 happens if and only if QT∗

N
happens and the 2T ∗N +1th investor

observes a good signal, because by this point AoN target is already met and we are back to the

standard cascade setting. Based on Lemma 4 for the case of k = 1, we have:

P (QT∗
N

) =
1

2p
P (U2T∗

N+1|V = 1) +
1

2q
P (U2T∗

N+1|V = 0)

=
1

2T ∗N + 1

(
2T ∗N + 1

T ∗N + 1

)
(pq)T

∗
N ,

and the expected profit from HLL path (implementable with T ∗N but not with T ∗N + 1) is:

EHLL ≡ m∗T ∗NP (QT∗
N

)P (LL for 2T ∗N + 1 and 2T ∗N + 2) =
1

2
T ∗NP (QT∗

N
)
p2 + q2

2
.

Similarly, let QT∗
N+1 be the event that there is no UP cascade yet and at the T ∗N + 1th supporting

investor there are exactly equal numbers of supporting and rejecting investors (that is to say, the

(T ∗N +1)th supporting investor is the (2T ∗N +2)th investor). When the target is T ∗N +1, the probability

that the project would be implemented with the T ∗N + 1 target but fails in the T ∗N target (since the

T ∗N th H signal investor behave differently given different AoN target) is:

P1 ≡ P (QT∗
N+1)− P (QT∗

N
)pq,

where the second term is the case that the event QT∗
N

realizes and investor i+1 and i+2 observe L and

H, respectively. Note that QT∗
N+1 indicates the T ∗N + 1th supporter sees equal number of supporting

and rejection actions (including her own), thus HLH meetings both funding target T ∗N + 1 and T ∗N
with the same payoff to the entrepreneur.
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The ratio of the expected profit from HLL path that meets T ∗N but not T ∗N + 1, to that from paths

implemented with T ∗N + 1 target but not T ∗N is:

EHLL

m∗(T ∗N + 1)P1
=

(p2 + q2)(T ∗N + 2)

6pq(T ∗N + 1)
≤ p2 + q2

4pq
,

where the last inequality comes from the fact that T ∗N ≥ 1. Since p2 + q2 + 2pq = (p + q)2 = 1,
p2+q2

4pq < 1 is equivalent to pq > 1
6 . So when pq > 1

6 , any T ∗N < TN (m∗ = 1
2 ) is strictly dominated by

T ∗N + 1.

When pq ≤ 1
6 , we have p ≥ 1

2 +
√
3
6 > 3

4 . We now show that any target T ∗N < TN ( 1
2 ) is strictly

dominated by alternative strategy m∗ = p (so km = 1) and AoN target T ∗N + 1. For m∗ = 1
2 and AoN

target T ∗N < TN ( 1
2 ), we have shown earlier that the project would be implemented either there is an

UP cascade before/at investor 2T ∗N − 1 or there is no UP cascade before 2T ∗N but the 2T ∗N th investor

is the T ∗N th supporting investor. It suffices to show that in either scenario, the alternative strategy

fares better for the entrepreneur.

(a) When there is an UP cascade before 2T ∗N , consider the case that right after the cascade the

next investor observes H signal and support. This would also result in an UP cascade for

(m∗ = p, T ∗N +1) and the same number of supporting investors. The conditional probability that

the next investor observes H is E(V = 1|1 more H signals)p + E(V = 0|1 more H signals)q =

p2 + q2 = 1 − 2pq ≥ 2
3 . For the case (m∗ = p, T ∗N + 1), for each contribution the entrepreneur

charges p instead of 1
2 . The entrepreneur receives higher expected payoffs from UP cascades

because p(p2 + q2) > 1
4 (p2 + q2) ≥ 1

2 .

(b) When there is no UP cascade before 2T ∗N but the 2T ∗N th investor is the T ∗N th supporting investor

(event QT∗
N

), consider two corresponding scenarios in (m∗ = p, T ∗N + 1): (i) Event QT∗
N

happens

and the next investor observes H and support; (ii) There is no UP cascade (corresponding to

m∗ = p, that is to say, km + 1 = 2) yet, but there is one more supporting investor by (and

including) the 2T ∗N − 1th investor, and the 2T ∗N th and 2T ∗N + 1th investors observe L and H,

respectively.

In both cases, funding target T ∗N +1 is met and there are at least the same number of supporting

investors as in QT∗
N

. For (i), conditional on there are equal number of supporting and rejecting

investors at 2T ∗N , the conditional probability that the next investor observes H is E(V =

1|0 more H signals)p+ E(V = 0|0 more H signals)q = 1
2 . For (ii), similar to the discussion on

P (QT∗
N

), the probability of scenario (ii) is:

1

2T ∗N

(
2T ∗N
2T∗

N+2
2

)
(pq)T

∗
N =

1

2
P (QT∗

N
).

The probability that either (i) or (ii) happens equals P (QT∗
N

), and in either case there are

at least the same number of supporting investors paying p > 1
2 . So for (m∗ = p, T ∗N + 1)

the entrepreneur receives more payoffs when there is no UP cascade before 2T ∗N . Thus the

entrepreneur is strictly better off with strategy (m∗ = p, T ∗N + 1).

In conclusion, T ∗N = TN (m∗) is the entrepreneur’s weakly dominant strategy.
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Proof of Proposition 2

Proof. When m∗ = E(V |1 less H signal), an UP cascade starts from the beginning and the project will be

implemented for sure. When m∗ > E(V |1 less H signal), an UP cascade starts once there are km + 1 ≥ 1

more H signals. Then for arbitrary positive integer km + 1, the starting time of an UP cascade is equivalent

to the standard gambler’s ruin problem with asymmetric simple random walk. Because when V = 1,

Pr(X = H|V = 1) = p > q, it is known that (Feller (1968), page 348 equation 2.8):

Pr(an UP cascade starts at some finite time) = 1.

Proof of Lemma 2

Proof. For investor 1, her posterior after observing H is E(V |X1 = H) = p. If m > p, then investor 1

chooses rejection regardless of her private signal and a DOWN cascade starts from the beginning for sure.

Since m = 1 − p = E(V |1 less H signal) will induce an UP cascade starting form the beginning for

sure, the entrepreneur has no incentive to charge m < 1 − p. Combine with m ≤ p we have m ∈ [1 − p, p].
Also, for each m ∈ (mk−1,mk], m = mk induces exactly the same number of supporting investors, so in the

equilibrium entrepreneur always charges m∗ = mk for some k ∈ {−1, 0, 1, . . . , N}. Without loss of generality,

only three prices are possible: m−1 = 1− p, m0 = 1
2 and m1 = p. Let S(m,N) be the expected profit when

the price is m and there are N ≥ 2 potential investors. It is clear that S(m,N) is increasing in N .

m = 1− p: The total profit is (1− p)N ;

m = 1
2 : After the first two observations, LL induces a DOWN cascade, HL and HH both induce

an UP cascade at investor 1, and LH does not change the belief. The expected profit is S(m,N) =
p+q
2

1
2N + qp+pq

2 ( 1
2 + S(m,N − 2)) ≤ 1

4N + pq( 1
2 + S(m,N)). Thus m = 1

2 is dominated by m = 1− p if:

S(m,N) ≤
N
4 + pq

2

1− pq
≤ (1− p)N for N = 2, 3, . . . (16)

One can verify that the inequality holds for p ∈ ( 1
2 ,

3
4 + 1

4 (3
1
3 − 3

2
3 )];

m = p: After the first two observations, HH induces an UP cascade, LL and LH both induce a

DOWN cascade at investor 1, and LH does not change the belief. The expected profit is S(m,N) =
p2+q2

2 pN + qp+pq
2 (p+ S(m,N − 2)) ≤ p2+q2

2 pN + pq(p+ S(m,N)). Thus m = p is dominated by m = 1− p
if:

S(m,N) ≤
p2+q2

2 pN + p2q

1− pq
≤ (1− p)N for N = 2, 3, . . . (17)

One can verify that the inequality holds for p ∈ ( 1
2 ,

3
4 + 1

4 (3
1
3 − 3

2
3 )].

Proof of Lemma 4

Proof. Since an UP cascade starts once there are k more H signals. Exactly k more H signals at investor i

implies i−k
2 L signals and i+k

2 H signals. The number of L signals suggests that i ≥ K, and the number of

H signals implies that i+ k must be even. There are C
i+k
2

i different potential paths to reach exactly k more

H signals, and for each path, the possibility is p
i+k
2 q

i−k
2 conditional on V = 1 and q

i+k
2 p

i−k
2 conditional on
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V = 0. Then:

Pr(exactly k more H signals at investor i) =

(
i

i+k
2

)
(pq)

i−k
2
pk + qk

2

By the reflection principle and Lemma 3 one can infer that ϕk,i = k
i Pr(exactly k more H signals at investor i).

That is:

ϕk,i =
k

i

(
i

i+k
2

)
(pq)

i−k
2
pk + qk

2
.

Proof of Proposition 3

Proof. For m = m−1 = 1 − p, the project will be financed for sure. For m = mk−1 k ∈ {1, 2, . . . , N}, an

UP cascade starts once there are k more supporting investors. When an UP cascade occurs at investor i,

all subsequent investors support the project and the financing is successful, there would be in total N − i−k
2

supporting investors, and each contributes m = mk−1. An UP cascade occurs only when i + k is even. If

N + k is odd and there is no UP cascade yet, then the project may still reach the AoN target if there are

exactly k− 1 more supporting investors at investor N . Suppose there is one more round N + 1, then an UP

cascade starts at investor N + 1 if and only if there are exactly k − 1 more supporting investors at investor

N and investor N + 1 observes H. That is to say, when k + N is odd, the probability that there is no

UP cascade and the project reaches the AoN target is 1
pϕk,N+1, and there would be N − N−k

2 supporting

investors in total.

To show the existence of N(k), we first prove the existence of N(0), then proceed to the k ≥ 1 case.

π(m−1, N) = (1 − p)N . When m = m0 = 1
2 , an UP cascade starts once there are more than 1 H signals.

From standard Gambler’s ruin problem we know that the conditional probability that an UP cascade occurs

at sometime is 1 if V = 1, and q
p if V = 0 (Feller (1968), page 348 equation 2.8). Because pq = p(1− p) < 1

4 ,

we have:

m0(Pr(V = 1) + Pr(V = 0)
q

p
) =

1

2
(
1

2
+

1 + 1−p
p

2
)

=
1

4p

> 1− p

= m−1.

Since ϕ0,i is strictly positive, there exists a strictly positive integer N1(0) such that:

m0

N1(0)∑
i=1

ϕ0,i > 1− p.

Let D = m0

N1(0)∑
i=1

ϕ0,i − (1− p) > 0, Q = m0

N1(0)∑
i=1

ϕ0,i
i

2
, and N(0) be the smallest integer that is larger than
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max{N1(0), QD}. Then for any N ≥ N(0):

π(m0, N) ≥ m0

N(0)∑
i=1

ϕ0,i(N −
i

2
)

= Nm0

N(0)∑
i=1

ϕ0,i −Q

≥ Q

D
D + (1− p)N −Q

= (1− p)N.

Now consider the case k ≥ 1. When the price is mk−1, an UP cascade starts once there are more than

k H signals. It occurs once there are more than k + 1 H signals when the price is mk. For both cases, the

conditional probability that an UP cascade occurs at sometime is 1 if V = 1. When V = 0, the conditional

probability that an UP cascade occurs at sometime is qk

pk for mk−1 and qk+1

pk+1 for mk, respectively.

For each k ≥ 1, and the time i arrival rate ϕk,i, there exists a corresponding ϕk+1,i+1 for price mk. For

each i, we have:

mkϕk+1,i+1

mk−1ϕk,i
=
mk

k+1
i+1

(i+1)!
i+k+2

2 ! i−k
2 !

(pq)
i−k
2

pk+1+qk+1

2

mk−1
k
i

i!
i+k
2 ! i−k

2 !
(pq)

i−k
2

pk+qk

2

= p
k + 1

k

i
i+k
2 + 1

(1 +
(pq)k−1(p− q)2

(pk + qk)2
).

Since limi↑∞ p i
i+k
2 +1

= 2p > 1, for each k, the ratio
mkϕk+1,i+1

mk−1ϕk,i
is monotonically increasing in i and there

exists an integer N1 that
mkϕk+1,i+1

mk−1ϕk,i
≥ 1 whenever i ≥ N1.

Because

(pk+1 + qk+1)(pk−1 + qk−1) = p2k + q2k + pk+1qk−1 + pk−1qk+1

= p2k + q2k + pk−1qk−1(p2 + q2)

> p2k + q2k + pk−1qk−1(2pq)

= (pk + qk)2.
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We have

lim
N↑∞

mk

N−1∑
i=1

ϕk+1,i+1 = mk(
1

2
+

qk+1

pk+1

2
)

=
1

2

pk

pk + qk
pk+1 + qk+1

pk+1

=
1

2p

pk+1 + qk+1

pk + qk

>
1

2p

pk + qk

pk−1 + qk−1

= mk−1(
1

2
+

qk

pk

2
)

= lim
N↑∞

mk−1

N∑
i=1

ϕk,i.

Given limN↑∞mkϕk+1,i+1 ↓ 0, there exists an integer N2 ≥ N1 such that:

D ≡ mk

N2−1∑
i=1

ϕk+1,i+1 −mk−1

N2∑
i=1

ϕk,i −mk−1
1

2p
ϕk,N2+1 > 0

Let Q ≡ mk−1
∑N2

i=1 ϕk,i
i−k
2 − mk

∑N2−1
i=1 ϕk+1,i+1

i−k
2 . Then for each k, let N(k) be the smallest integer

that is larger than max{N2,
Q
D}. Then for any N ≥ N(0):

π(mk, N)− π(mk−1, N) > π(mk, N(k))− π(mk−1, N(k))

> N(k)mk

N2−1∑
i=1

ϕk+1,i+1 −mk−1

N2∑
i=1

ϕk,i −Q−
1

p
mk−1ϕk,N(k)(N(k)− N(k)− k

2
)

> N(k)D −Q

≥ Q

D
D −Q

= 0.
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