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Abstract
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I Introduction

In his presidential address, Cochrane (2011) argues the cross section of the expected

return “is once again descending into chaos”. Harvey et al. (2016) identify more than 300

published factors that have predictive power for the cross section of expected returns.1

Many economic models, such as the consumption CAPM of Lucas (1978), Breeden (1979),

and Rubinstein (1976), instead predict that only a small number of state variables suffice

to summarize cross-sectional variation in expected returns.

Researchers typically employ two methods to identify return predictors: (i)

(conditional) portfolio sorts based on one or multiple characteristics such as size or

book-to-market, and (ii) linear regression in the spirit of Fama and MacBeth (1973). Both

methods have many important applications, but they fall short in what Cochrane (2011)

calls the multidimensional challenge: “[W]hich characteristics really provide independent

information about average returns? Which are subsumed by others?” Portfolio sorts are

subject to the curse of dimensionality when the number of characteristics is large, and

linear regressions make strong functional-form assumptions and are sensitive to outliers.2

Cochrane (2011) speculates, “To address these questions in the zoo of new variables, I

suspect we will have to use different methods.”

We propose a nonparametric method to determine which firm characteristics provide

independent information for the cross section of expected returns without making

strong functional-form assumptions. Specifically, we use a group LASSO (least absolute

shrinkage and selection operator) procedure suggested by Huang, Horowitz, and Wei

(2010) for model selection and nonparametric estimation. Model selection deals with

the question of which characteristics have incremental predictive power for expected

returns, given the other characteristics. Nonparametric estimation deals with estimating

the effect of important characteristics on expected returns without imposing a strong

functional-form.3

We show three applications of our proposed framework. First, we study which

1Figure 2 documents the number of discovered factors over time.
2We discuss these, and related concerns in Section II and compare current methods with our proposed

framework in Section III.
3In our empirical application, we estimate quadratic splines.
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characteristics provide independent information for the cross section of expected returns.

We estimate our model on 36 characteristics including size, book-to-market, beta, and

other prominent variables and anomalies on a sample period from July 1963 to June

2015. Only 15 variables, including size, idiosyncratic volatility, and past return-based

predictors, have independent explanatory power for expected returns for the full sample

period and all stocks. An equally-weighted hedge portfolio going long the stocks with the

10% highest expected returns and shorting the 10% of stocks with the lowest predicted

returns has an in-sample Sharpe ratio of close to 3. Only eight characteristics have

predictive power for returns in the first half of our sample. In the second half, instead,

we find 17 characteristics are significantly associated with cross-sectional return premia.

For stocks whose market capitalization is above the 20% NYSE size percentile, only seven

characteristics, including size, past returns, and standardized unexplained volume, remain

significant return predictors. The in-sample Sharpe ratio is still 1.81 for large stocks.

Second, we compare the out-of-sample performance of the nonparametric model with

a linear model. We estimate both models over a period until 1990 and select significant

return predictors. We then use 10 years of data to estimate the model on the selected

characteristics. In the first month after the end of our estimation period, we take the

selected characteristics, predict one-month-ahead returns, and construct a hedge portfolio

similar to our in-sample exercise. We roll the estimation and prediction period forward

by one month and repeat the procedure until the end of the sample.

Specifically, we perform model selection once until December 1990. Our first

estimation period is from December of 1981 until November of 1990, and the first

out-of-sample prediction is for January 1991 using characteristics from December 1990.4

We then move the estimation and prediction period forward by one month. The

nonparametric model generates an average Sharpe ratio for an equally-weighted hedge

portfolio of 3.42 compared to 2.26 for the linear model.5 The linear model selects

21 characteristics in sample compared to only eight for the nonparametric model, but

performs worse out of sample. Nonlinearities are important. We find an increase in

4We merge balance-sheet variables to returns following the Fama and French (1993) convention of
requiring a lag of at least six months, and our results are therefore indeed out of sample.

5The linear model we estimate and the results for the linear model are similar to Lewellen (2015).
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out-of-sample Sharpe ratios relative to the Sharpe ratio of the linear model when we

employ the nonparametric model for prediction on the 21 characteristics the linear model

selects. The linear model appears to overfit the data in sample. We find an identical

Sharpe ratio for the linear model when we use the eight characteristics we select with the

nonparametric model as we do with the 21 characteristics the linear model selects.

Third, we study whether the predictive power of characteristics for expected returns

varies over time. We estimate the model using 120 months of data on all characteristics we

select in our baseline analysis, and then estimate rolling one-month-ahead return forecasts.

We find substantial time variation in the predictive power of characteristics for expected

returns. As an example, momentum returns conditional on other return predictors vary

substantially over time, and we find a momentum crash similar to Daniel and Moskowitz

(2016) as past losers appreciated during the recent financial crisis. Size conditional on the

other selected return predictors, instead, has a significant predictive power for expected

returns throughout our sample period similar to the findings in Asness, Frazzini, Israel,

Moskowitz, and Pedersen (2015).

A Related Literature

The capital asset pricing model (CAPM) of Sharpe (1964), Lintner (1965), and Mossin

(1966) predicts that an asset’s beta with respect to the market portfolio is a sufficient

statistic for the cross section of expected returns. Fama and MacBeth (1973) provide

empirical support for the CAPM. Subsequently, researchers identified many variables,

such as size (Banz (1981)), the book-to-market ratio (Rosenberg et al. (1985)), leverage

(Bhandari (1988)), earnings-to-price ratios (Basu (1983)), or past returns (Jegadeesh and

Titman (1993)) that contain additional independent information for expected returns.

Sorting stocks into portfolios based on these characteristics often led to rejection of the

CAPM because the spread in CAPM betas could not explain the spread in returns. Fama

and French (1992) synthesize these findings, and Fama and French (1993) show that a

three-factor model with the market return, a size, and a value factor can explain cross

sections of stocks sorted on characteristics that appeared anomalous relative to the CAPM.

In this sense, Fama and French (1993) and Fama and French (1996) achieve a significant
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dimension reduction: researchers who want to explain the cross section of stock returns

only have to explain the size and value factors.

Daniel and Titman (1997), on the contrary, argue that characteristics have higher

explanatory power for the cross section of expected returns than loadings on pervasive

risk factors. Chordia, Goyal, and Shanken (2015) develop a method to estimate

bias-corrected return premia from cross-sectional data for individual stocks. They find

firm characteristics explain more of the cross-sectional variation in expected returns

compared to factor loadings. Kozak, Nagel, and Santosh (2015) show comovements of

stocks and associations of returns with characteristics orthogonal to factor exposures

do not allow researchers to disentangle rational from behavioral explanations for return

spreads. We study which characteristics provide incremental information for expected

returns but do not aim to investigate whether rational models or behavioral explanations

drive our findings.

In the 20 years following the publication of Fama and French (1992), many researchers

joined a “fishing expedition” to identify characteristics and factor exposures that the

three-factor model cannot explain. Harvey, Liu, and Zhu (2016) provide an overview of

this literature and list over 300 published papers that study the cross section of expected

returns. They propose a t-statistic of 3 for new factors to account for multiple testing on

a common data set. Figure 3 shows the suggested adjustment over time. However,

even employing the higher threshold for the t-statistic still leaves approximately 150

characteristics as useful predictors for the cross section of expected returns. Fama and

French (2015) take a different route and augment the three-factor model of Fama and

French (1993) with an investment and profitability factor (Haugen and Baker (1996)

and Novy-Marx (2013)). Fama and French (2016) test the five-factor model on a small

set of anomalies and find substantial improvements relative to a three-factor model, but

also substantial unexplained return variation across portfolios. Hou et al. (2015) test a

q-factor model consisting of four factors on 35 anomalies that are univariately associated

with cross-sectional return premia, and find their model can reduce monthly alphas to an

average of 0.20%. Barillas and Shanken (2016) develop a new method to directly compare

competing factor models.

5



The large number of significant predictors is not a shortcoming of Harvey et al.

(2016), who address the issue of multiple testing. Instead, authors in this literature

usually consider their proposed return predictor in isolation without conditioning on

previously discovered return predictors. Haugen and Baker (1996) and Lewellen (2015)

are notable exceptions. They employ Fama and MacBeth (1973) regressions to combine

the information in multiple characteristics. Lewellen (2015) jointly studies the predictive

power of 15 characteristics and finds that only a few are significant predictors for the cross

section of expected returns. Green, Hand, and Zhang (2016) extend Lewellen (2015) to

many more characteristics for a shorter sample starting in 1980, but confirm his basic

conclusion. Although Fama-MacBeth regressions carry a lot of intuition, they do not

offer a formal method to select significant return predictors. We build on Lewellen (2015)

and provide a framework that allows for nonlinear association between characteristics and

returns, provide a formal framework to disentangle significant from insignificant return

predictors, and study many more characteristics.

Light, Maslov, and Rytchkov (2016) use partial least squares (PLS) to summarize

the predictive power of firm characteristics for expected returns. PLS summarizes

the predictive power of all characteristics and therefore does not directly disentangle

important from unimportant characteristics and does not reduce the number of

characteristics for return prediction. Brandt, Santa-Clara, and Valkanov (2009)

parameterize portfolio weights as a function of stock characteristics to sidestep the

task to model the joint distribution of expected returns and characteristics. DeMiguel,

Martin-Utrera, Nogales, and Uppal (2016) extend the parametric portfolio approach

of Brandt et al. (2009) to study which characteristics provide incremental information

for the cross section of returns. Specifically, DeMiguel et al. (2016) add long-short

characteristic-sorted portfolios to benchmark portfolios, such as the value-weighted market

portfolio, and ask which portfolios increase investor utility. Moritz and Zimmermann

(2016) use tree-based conditional portfolio sorts to study which past-return based

predictors provide independent information for future returns. Decision trees work well in

practice but the statistical literature has not (yet) developed many theoretical properties

such as consistency.
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We also contribute to a small literature estimating non-linear asset-pricing models

using semi- and nonparametric methods. Bansal and Viswanathan (1993) extend the

arbitrage pricing theory (APT) of Ross (1976) and estimate the stochastic discount factor

semiparametrically using neural nets. They allow for payoffs to be nonlinear in risk factors

and find their APT is better able to explain the returns of size-sorted portfolios. Chapman

(1997) explains the size effect with a consumption-based model in which he approximates

the stochastic discount factor with orthonormal polynomials in a low number of state

variables. Connor, Hagmann, and Linton (2012) propose a nonparametric regression

method relating firm characteristics to factor loadings in a nonlinear way. They find

momentum and stock volatility have explanatory power similar to size and value for the

cross section of expected returns as size and value.

We build on a large literature in economics and statistics using penalized regressions.

Horowitz (2016) gives a general overview of model selection in high-dimensional models,

and Huang, Horowitz, and Wei (2010) discuss variable selection in a nonparametric

additive model similar to the one we implement empirically. Recent applications of LASSO

methods in finance are Huang and Shi (2016), who use an adaptive group LASSO in a

linear framework and construct macro factors to test for determinants of bond risk premia.

Chinco, Clark-Joseph, and Ye (2015) assume the irrepresentable condition of Meinshausen

and Bühlmann (2006) to achieve model-selection consistency in a single-step LASSO.

They use a linear model for high-frequency return predictability using past returns of

related stocks, and find their method increases predictability relative to OLS. Goto and

Xu (2015) use a LASSO to obtain a sparse estimator of the inverse covariance matrix for

mean variance portfolio optimization.

Bryzgalova (2016) highlights that weak identification in linear factor models could

result in an overstatement of significant cross-sectional risk factors.6 She proposes a

shrinkage-based estimator to detect possible rank deficiency in the design matrix and

to identify strong asset-pricing factors. Gagliardini, Ossola, and Scaillet (2016) develop

a weighted two-pass cross-sectional regression method to estimate risk premia from an

unbalanced panel of individual stocks. Giglio and Xiu (2016) instead propose a three-pass

6See also Jagannathan and Wang (1998), Kan and Zhang (1999), Kleibergen (2009), Gospodinov,
Kan, and Robotti (2014), Kleibergen and Zhan (2015), and Burnside (2016).

7



regression method that combines principal component analysis and a two-stage regression

framework to estimate consistent factor risk premia in the presence of omitted factors

when the cross section of test assets is large. We, instead, are mainly concerned with

formal model selection, that is, which characteristics provide incremental information in

the presence of other characteristics.

II Current Methodology

A Expected Returns and the Curse of Dimensionality

One aim of the empirical asset-pricing literature is to identify characteristics that predict

expected returns, that is, find a characteristic C in period t−1 that predicts excess returns

of firm i in the following period, Rit. Formally, we try to describe the conditional mean

function,

E[Rit | Cit−1]. (1)

We often use portfolio sorts to approximate equation (1). We typically sort stocks

into 10 portfolios and compare mean returns across portfolios. Portfolio sorts are simple,

straightforward, and intuitive, but they also suffer from several shortcomings. First,

we can only use portfolio sorts to analyze a small set of characteristics. Imagine sorting

stocks jointly into five portfolios based on CAPM beta, size, book-to-market, profitability,

and investment. We would end up with 55 = 3125 portfolios, which is larger than the

number of stocks at the beginning of our sample.7 Second, portfolio sorts offer little

formal guidance to discriminate between characteristics. Consider the case of sorting

stocks into five portfolios based on size, and within these, into five portfolios based on the

book-to-market ratio. If we now find the book-to-market ratio only leads to a spread in

returns for the smallest stocks, do we conclude it does not matter for expected returns?

Fama and French (2008) call this second shortcoming “awkward.” Third, we implicitly

assume expected returns are constant over a part of the characteristic distribution,

7The curse of dimensionality is a well-understood shortcoming of portfolio sorts. See Fama and French
(2015) for a recent discussion in the context of the factor construction for their five-factor model. They
also argue not-well-diversified portfolios have little power in asset-pricing tests.
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such as the smallest 10% of stocks, when we use portfolio sorts as an estimator of the

conditional mean function. Fama and French (2008) call this third shortcoming “clumsy.”8

Nonetheless, portfolio sorts are by far the most commonly used technique to analyze which

characteristics have predictive power for expected returns.

Instead of (conditional) double sorts, we could sort stocks into portfolios and perform

spanning tests, that is, we regress long-short portfolios on a set of risk factors. Take 10

portfolios sorted on profitability and regress the hedge return on the three Fama and

French (1993) factors. A significant time-series intercept would correspond to an increase

in Sharpe ratios for a mean-variance investor relative to the investment set the three Fama

and French (1993) factors span (see Gibbons, Ross, and Shanken (1989)). The order

in which we test characteristics matters, and spanning tests cannot solve the selection

problem of which characteristics provide incremental information for the cross section of

expected returns.

An alternative to portfolio sorts and spanning tests is to assume linearity of equation

(1) and run linear panel regressions of excess returns on S characteristics, namely,

Rit = α +
S∑

s=1

βsCs,it−1 + εit. (2)

Linear regressions allow us to study the predictive power for expected returns of many

characteristics jointly, but they also have potential pitfalls. First, no a priori reason

explains why the conditional mean function should be linear.9 Fama and French (2008)

estimate linear regressions as in equation (2) to dissect anomalies, but raise concerns over

potential nonlinearities. They make ad hoc adjustments and use, for example, the log

book-to-market ratio as a predictive variable. Second, linear regressions are sensitive to

outliers. Third, small, illiquid stocks might have a large influence on point estimates

because they represent the majority of stocks. Researchers often use ad hoc techniques to

mitigate concerns related to microcaps and outliers, such as winsorizing observations and

8Portfolio sorts are a restricted form of nonparametric regression. We will use the similarities of
portfolio sorts and nonparametric regressions to develop intuition for our proposed framework below.

9Fama and MacBeth (1973) regressions also assume a linear relationship between expected returns and
characteristics. Fama-MacBeth point estimates are numerically equivalent to estimates from equation (2)
when characteristics are constant over time.
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estimating linear regressions separately for small and large stocks (see Lewellen (2015) for

a recent example).

Cochrane (2011) synthesizes many of the challenges that portfolio sorts and linear

regressions face in the context of many return predictors, and suspects “we will have to

use different methods.”

B Equivalence between Portfolio Sorts and Regressions

Cochrane (2011) conjectures in his presidential address, “[P]ortfolio sorts are really the

same thing as nonparametric cross-sectional regressions, using nonoverlapping histogram

weights.” Additional assumptions are necessary to show a formal equivalence, but his

conjecture contains valuable intuition to model the conditional mean function formally.

We first show a formal equivalence between portfolio sorts and regressions and then use

the equivalence to motivate the use of nonparametric methods.10

Suppose we observe excess returns Rit and a single characteristic Cit−1 for stocks

i = 1, . . . , Nt and time periods t = 1, . . . , T . We sort stocks into L portfolios depending

on the value of the lagged characteristic, Cit−1. Specifically, stock i is in portfolio l at

time t if Cit−1 ∈ Itl, where Itl indicates an interval of the distribution for a given firm

characteristic. For example, take a firm with lagged market cap in the 45th percentile

of the firm size distribution. We would sort that stock in the 5th out of 10 portfolios in

period t. For each time period t, let Ntl be the number of stocks in portfolio l,

Ntl =
Nt∑
i=1

1(Cit−1 ∈ Itl).

The excess return of portfolio l at time t, Ptl, is then

Ptl =
1

Ntl

N∑
i=1

Rit1(Cit−1 ∈ Itl).

The difference in average excess returns between portfolios l and l′, or the excess return

10Cattaneo et al. (2016) develop inference methods for a portfolio-sorting estimator and also show the
equivalence between portfolio sorting and nonparametric estimation.
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e(l, l′), is

e(l, l′) =
1

T

T∑
t=1

(Ptl − Ptl′),

which is the intercept in a (time-series) regression of the difference in portfolio returns,

Ptl − Ptl′ , on a constant.11

Alternatively, we can run a pooled time-series cross-sectional regression of excess

returns on dummy variables, which equal 1 if firm i is in portfolio l in period t. We

denote the dummy variables by 1(Cit−1 ∈ Itl) and write,

Rit =
L∑
l=1

βl1(Cit−1 ∈ Itl) + εit.

Let R be the NT × 1 vector of excess returns and let X be the NT ×L matrix of dummy

variables, 1(Cit−1 ∈ Itl). Let β̂ be an OLS estimate,

β̂ = (X ′X)−1X ′R.

It then follows that

β̂l =
1∑T

t=1

∑N
i=1 1(Cit−1 ∈ Itl)

T∑
t=1

N∑
i=1

Rit1(Cit−1 ∈ Itl)

=
1∑T

t=1Ntl

T∑
t=1

N∑
i=1

Rit1(Cit−1 ∈ Itl)

=
1∑T

t=1Ntl

T∑
t=1

NtlPtl

=
1

T

T∑
t=1

Ntl

1
T

∑T
t=1Ntl

Ptl.

Now suppose we have the same number of stocks in each portfolio l for each time

period t, that is, Ntl = N̄l for all t. Then

β̂l =
1

T

T∑
t=1

Ptl

11We only consider univariate portfolio sorts in this example to gain intuition.
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and

β̂l − β̂l′ =
1

T

T∑
t=1

(Ptl − Ptl′) = e(l, l′).

Hence, the slope coefficients in pooled time-series cross-sectional regressions are equivalent

to average portfolio returns, and the difference between two slope coefficients is the excess

return between two portfolios.

If the number of stocks in the portfolios changes over time, then portfolio sorts and

regressions typically differ. We can restore equivalence in two ways. First, we could take

the different number of stocks in portfolio l over time into account when we calculate

averages, and define excess return as

e∗(l, l′) =
1∑T

t=1Ntl

T∑
t=1

NtlPtl −
1∑T

t=1Ntl′

T∑
t=1

Ntl′Ptl′ ,

in which case, we again get β̂l − β̂l′ = e∗(l, l′).

Second, we could use the weighted least squares estimator,

β̃ = (X ′WX)−1X ′WR,

where the NT × NT weight matrix W is a diagonal matrix with the inverse number of

stocks on the diagonal, diag(1/Ntl). With this estimator, we again get β̃l − β̃l′ = e(l, l′).

III Nonparametric Estimation

We now use the relationship between portfolio sorts and regressions to develop intuition

for our nonparametric estimator, and show how we can interpret portfolio sorts as a

special case of nonparametric estimation. We then show how to select characteristics

with independent information for expected returns within that framework.

Suppose we knew the conditional mean function mt(c) ≡ E[Rit | Cit−1 = c].12 Then,

E[Rit | Cit−1 ∈ Ilt] =

∫
Itl

mt(c)fCit−1|Cit−1∈Itl(c)dc,

12We take the expected excess return for a fixed time period t.
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where fCit−1|Cit−1∈Itl is the density function of the characteristic in period t−1, conditional

on Cit−1 ∈ Itl. Hence, to obtain the expected return of portfolio l, we can simply

integrate the conditional mean function over the appropriate interval of the characteristic

distribution. Therefore, the conditional mean function contains all information for

portfolio returns. However, knowing mt(c) provides additional information about

nonlinearities in the relationship between expected returns and characteristics, and the

functional form more generally.

To estimate the conditional mean function, mt, consider again regressing excess

returns, Rit, on L dummy variables, 1(Cit−1 ∈ Itl),

Rit =
L∑
l=1

βl1(Cit−1 ∈ Itl) + εit.

In nonparametric estimation, we call indicator functions of the form 1(Cit−1 ∈ Itl) constant

splines. Estimating the conditional mean function, mt, with constant splines, means we

approximate it by a step function. In this sense, portfolio sorting is a special case of

nonparametric regression. A step function is nonsmooth and therefore has undesirable

theoretical properties as a nonparametric estimator, but we build on this intuition to

estimate mt nonparametrically.13

Figures 4–6 illustrate the intuition behind the relationship between portfolio sorts and

nonparametric regressions. These figures show returns on the y-axis and book-to-market

ratios on the x-axis, as well as portfolio returns and the nonparametric estimator we

propose below for simulated data.

We see in Figure 4 that most of the dispersion in book-to-market ratios and returns

is in the extreme portfolios. Little variation in returns occurs across portfolios 2-4 in

line with empirical settings (see Fama and French (2008)). Portfolio means offer a good

approximation of the conditional mean function for intermediate portfolios. We also see,

however, that portfolios 1 and 5 have difficulty capturing the nonlinearities we see in the

data.

Figure 5 documents that a nonparametric estimator of the conditional mean function

13We formally define our estimator in Section III. D below.
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provides a good approximation for the relationship between book-to-market ratios and

returns for intermediate values of the characteristic, but also in the extremes of the

distribution.

Finally, we see in Figure 6 that portfolio means provide a better fit in the tails of

the distribution once we allow for more portfolios. Portfolio mean returns become more

comparable to the predictions from the nonparametric estimator the larger the number

of portfolios.

A Multiple Regression & Additive Conditional Mean Function

Both portfolio sorts and regressions theoretically allow us to look at several characteristics

simultaneously. Consider small (S) and big (B) firms and value (V ) and growth (G) firms.

We could now study four portfolios: (SV ), (SG), (BV ), and (BG). However, portfolio

sorts quickly become infeasible as the number of characteristics increases. For example,

if we have four characteristics and partition each characteristics into five portfolios, we

end up with 54 = 625 portfolios. Analyzing 625 portfolio returns would, of course, be

impractical, but would also result in poorly diversified portfolios.

In nonparametric regressions, an analogous problem arises. Estimating the

conditional mean function mt(c) ≡ E[Rit | Cit = c] fully nonparametrically with many

regressors results in a slow rate of convergence and imprecise estimates in practice.14

Specifically, with S characteristics and Nt observations, assuming technical regularity

conditions, the optimal rate of convergence in mean square is N
−4/(4+S)
t , which is always

smaller than the rate of convergence for the parametric estimator of N−1
t . Notice the rate

of convergence decreases as S increases.15 Consequently, we get an estimator with poor

finite sample properties if the number of characteristics is large.

As an illustration, suppose we observe one characteristic, in which case, the rate of

convergence is N
−4/5
t . Now suppose instead we have 11 characteristics, and let N∗t be the

number of observations necessary to get the same rate of convergence as in the case with

14This literature refers to this phenomenon as the “curse of dimensionality” (see Stone (1982) for a
formal treatment).

15We assume the conditional mean function mt is twice continuously differentiable.
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one characteristic. We get,

(N∗t )−4/15 = N
−4/5
t ⇒ N∗t = N3

t .

Hence, in the case with 11 characteristics, we have to raise the sample size to the power

of 3 to obtain the same rate of convergence and comparable finite sample properties as

in the case with only one characteristic. Consider a sample size, Nt, of 1,000. Then, we

would need 1 billion return observations to obtain similar finite sample properties of an

estimated conditional mean function with 11 characteristics.

Conversely, suppose S = 11 and we have N∗t = 1, 000 observations. This combination

yields similar properties as an estimation with one characteristic and a sample size Nt =

(N∗t )1/3 of 10.

Nevertheless, if we are interested in which characteristics provide incremental

information for expected returns given other characteristics, we cannot look at each

characteristic in isolation. A natural solution in the nonparametric regression framework

is to assume an additive model,

mt(c1, . . . , cS) =
S∑

s=1

mts(cs),

where mts(·) are unknown functions. The main theoretical advantage of the additive

specification is that the rate of convergence is always N
−4/5
t , which does not depend on

the number of characteristics S (see Stone (1985), Stone (1986), and Horowitz et al.

(2006)).

An important restriction of the additive model is

∂2mt(c1, . . . , cS)

∂cs∂cs′
= 0

for all s 6= s′; therefore, the additive model does not allow for interactions between

characteristics; for example, the predictive power of the book-to-market ratio for expected

returns does not vary with firm size. One way around this shortcoming is to add certain

interactions as additional regressors. For instance, we could interact every characteristic
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with size to see if small firms are really different. An alternative solution is to estimate

the model separately for small and large stocks. Brandt et al. (2009) make a similar

assumption but also stress that we can always interpret characteristics c as the cross

product of a more basic set of characteristics.

Although the assumption of an additive model is somewhat restrictive, it provides

desirable econometric advantages and is far less restrictive than assuming linearity right

away as we do in Fama-MacBeth regressions. Another major advantage of an additive

model is that we can jointly estimate the model for a large number of characteristics, select

important characteristics, and estimate the summands of the conditional mean function,

mt, simultaneously, as we explain in Section D .

B Comparison of Linear & Nonparametric Models

We now want to compare portfolio sorts and a linear model with nonparametric models

in some specific numerical examples. The comparison helps us understand the potential

pitfalls from assuming a linear relationship between characteristics and returns, and gain

some intuition for why we might select different characteristics in a linear model in our

empirical tests in Section V.

Suppose we observe excess returns Rit and a single characteristic, Cit−1 distributed

according to Cit−1 ∼ U [0, 1] for i = 1, . . . , N and t = 1, . . . , T with the data-generating

process,

Rit = mt(Cit−1) + εit,

where E[εit | Cit−1] = 0.

Without knowing the conditional mean function mt, we could sort stocks into

portfolios according to the distribution of the characteristic. Cit−1 predicts returns if

mean returns differ significantly across portfolios. For example, we could construct 10

portfolios based on the percentiles of the distribution and test if the first portfolio has a

significantly different return than the 10th portfolio.

If we knew the conditional mean function mt, we could conclude that Cit−1 predicts

returns if mt is not constant on [0, 1]. Moreover, knowing the conditional mean function
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allows us to construct portfolios with a large spread in returns. Instead of sorting stocks

based on the values of the characteristic Cit−1, we could sort stocks directly based on the

conditional mean function mt(Cit−1). For example, let qt(α) be the α-quantile of mt(Cit−1)

and let stock i be in portfolio l at time t if mt(Cit−1) ∈ [qt((l − 1)/10), qt(l/10)]. That

is, we construct 10 portfolios based on return predictions. Portfolio 1 contains the 10%

of stocks with the lowest predicted returns, and portfolio 10 contains the 10% of stocks

with the highest predicted returns.

If mt is monotone and we only study a single characteristic, both sorting based on

the value of the characteristic and sorting based on predicted returns mt(Cit−1) results in

the same portfolios. However, if mt is not monotone, the “10-1 portfolio” return is higher

when we sort based on mt(Cit−1).

As a simple example, suppose mt(c) = (c−0.5)2. Then the expected “10-1 portfolio”

return when sorting based on characteristic, Cit−1, is 0.

We now consider two characteristics, C1,it−1 ∼ U [0, 1] and C2,it−1 ∼ U [0, 1], and

assume the following data-generating process:

Rit = mt1(C1,it−1) +mt2(C2,it−1) + εit,

where E[εit | C1,it−1, C2,it−1] = 0. Again, we can construct portfolios with a large spread

in predicted returns based on the value of the conditional mean function, mt. The idea is

similar to constructing trading strategies based on the predicted values of a linear model,

Rit = β0 + β1C1,it−1 + β2C2,it−1 + εit.

We will now, however, illustrate the potential pitfalls of the linear model and how a

nonparametric model can alleviate them.

Assume the following return-generating process:

Rit = −0.2 + 0.3
√
C1,it−1 + 0.25C2

2,it−1 + εit.

In this example, a regression of returns Rit on the characteristics C1,it−1 and C2,it−1 yields
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slope coefficients of around 0.25 in large samples. Therefore, the predicted values of a

linear model treat C1,it−1 and C2,it−1 almost identically, although they affect returns very

differently.

We now compare the performance of the linear and nonparametric model for the

“10-1” hedge portfolio. The table below shows monthly returns, standard deviations, and

Sharpe ratios from a simulation for 2, 000 stocks and 240 periods for both models.16

Predicted returns for the nonparametric model are slightly higher compared to the

linear model, with almost identical standard deviations resulting in larger Sharpe ratios

with the nonparametric method. Nevertheless, the linear model is a good approximation

in this example, and the nonparametric method improves only marginally on the linear

model.

Linear Nonparametric

Return 0.1704 0.1734

Std 0.2055 0.2054

Sharpe Ratio 0.8329 0.8480

Instead, now we study the following data-generating process:

Rit = −0.3 + 0.3Φ((C1,it−1 − 0.1)/0.1) + 0.3Φ((C2,it−1 − 0.9)/0.1) + εit,

where Φ denotes the standard normal cdf. Figure 1 plots the two functions, along with a

parametric and a nonparametric estimate for a representative data set.

In this example, a regression of Rit on C1,it−1 and C2,it−1 yields two slope coefficients

of around 0.15. Hence, as in the previous example, the predicted values of a linear model

treat C1,it−1 and C2,it−1 identically.

16The numbers in the table are averages of portfolio means, standard deviations, and Sharpe ratios
of 1, 000 simulated data sets. We use the first 120 periods to estimate the conditional functions using
quadratic splines, which we explain below, and form portfolios for each remaining period based on the
estimates. Therefore, the portfolio means in the table are based on 120 time periods.
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Figure 1: Regression functions and estimates

Linear Nonparametric

Return 0.1154 0.1863

Std 0.1576 0.1576

Sharpe Ratio 0.7352 1.1876

The portfolio returns using the nonparametric model are now substantially higher

compared to the linear model, with almost identical standard deviations, resulting in

much larger Sharpe ratios. In this example, the linear model is a poor approximation

of the true data-generating process even though returns increase monotonically in both

characteristics.17

Note that we do not know the true data-generating process, and the linear model

may provide a good or poor approximation. Therefore, nonparametric methods are the

natural choice.

In a last example, we want to discuss how the linear and nonparametric models

treat nonlinear transformations of variables. This example helps us understand why a

linear model might select more variables in empirical settings. Consider the following

17We thank Seth Pruitt for raising this point.
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data-generating process:

Rit = C1,it−1 + C2,it−1 + εit,

with C2,it−1 = C2
1,it−1; that is, the second characteristic is just the square of the first

characteristic. In the linear model, both characteristics are important to describe the

conditional mean function, whereas in the nonparametric model, mt is a function of

C1,it−1 only (or alternatively, C2,it−1 only). In Section D , we consider model selection

next to estimation, and these differences between the linear and the nonparametric model

will play an important role.

C Normalization of Characteristics

We now describe a suitable normalization of the characteristics, which will allow us to map

our nonparametric estimator directly to portfolio sorts. As before, define the conditional

mean function mt for S characteristics as

mt(C1,it−1, . . . , CS,it−1) = E[Rit | C1,it−1, . . . , CS,it−1].

For each characteristic s, let Fs,t(·) be a known strictly monotone function and denote its

inverse by F−1
s,t (·). Define C̃s,it−1 = Fs,t(Cs,it−1) and

m̃t(c1, . . . , cS) = mt(F
−1
1,t (c1), . . . , F−1

S,t (cS)).

Then,

mt(C1,it−1, . . . , CS,it−1) = m̃t(C̃1,it−1, . . . , C̃S,it−1).

Knowledge of the conditional mean function mt is equivalent to knowing the transformed

conditional mean function m̃t. Moreover, using a transformation does not impose any

additional restrictions and is therefore without loss of generality.

Instead of estimating mt, we will estimate m̃t for a rank transformation that has

desirable properties and nicely maps to portfolio sorting. When we sort stocks into

portfolios, we are typically not interested in the value of a characteristic in isolation,

but rather in the rank of the characteristic in the cross section. Consider firm size. Size
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grows over time, and a firm with a market capitalization of USD 1 billion in the 1960s

was considered a large firm, but today it is not. Our normalization considers the relative

size in the cross section rather than the absolute size, similar to portfolio sorting.

Hence, we choose the rank transformation of Cs,it−1 such that the cross-sectional

distribution of a given characteristic lies in the unit interval; that is, Cs,it−1 ∈ [0, 1].

Specifically, let

Fs,t(Cs,it−1) =
rank(Cs,it−1)

Nt + 1
.

Here, rank(mini=1...,Nt Cs,it−1) = 1 and rank(maxi=1...,Nt Cs,it−1) = Nt. Therefore, the α

quantile of C̃s,it−1 is α. We use this particular transformation because portfolio sorting

maps into our estimator as a special case.18

Although knowing mt is equivalent to knowing m̃t, in finite samples, the estimates

of the two typically differ; that is,

m̂t(c1, . . . , cS) 6= ̂̃mt(F
−1
1,t (c1), . . . , F−1

S,t (cS)).

In numerical simulations and in the empirical application, we found m̃t yields better

out-of-sample predictions than mt. The transformed estimator appears to be less sensitive

to outliers thanks to the rank transformation, which could be one reason for the superior

out-of-sample performance.

In summary, the transformation does not impose any additional assumptions, directly

relates to portfolio sorting, and works well in finite samples because it appears more robust

to outliers.19

D Adaptive Group LASSO

We use a group LASSO procedure suggested by Huang et al. (2010) for estimation and

to select those characteristics that provide incremental information for expected returns,

that is, for model selection. To recap, we are interested in modeling excess returns as a

18The general econometric theory we discuss in Section D (model selection, consistency, etc.) also
applies to any other monotonic transformation or the non-transformed conditional mean function.

19Cochrane (2011) stresses the sensitivity of regressions to outliers. Our transformation is insensitive
to outliers and nicely addresses his concern.
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function of characteristics; that is,

Rit =
S∑

s=1

m̃ts(C̃s,it−1) + εit, (3)

where m̃s(·) are unknown functions and C̃s,it−1 denotes the rank-transformed character-

istic.

The idea of the group LASSO is to estimate the functions m̃ts nonparametrically,

while setting functions for a given characteristic to 0 if the characteristic does not help

predict expected returns. Therefore, the procedure achieves model selection; that is, it

discriminates between the functions m̃ts, which are constant, and the functions that are

not constant.20

In portfolio sorts, we approximate m̃ts by a constant within each portfolio. We

instead propose to estimate quadratic functions over parts of the normalized characteristic

distribution. Let 0 = t0 < t1 < · · · < tL−1 < tL = 1 be a sequence of increasing numbers

between 0 and 1 similar to portfolio breakpoints, and let Ĩl for l = 1, . . . , L be a partition

of the unit interval, that is, Ĩl = [tl−1, tl) for l = 1, . . . , L − 1 and ĨL = [tL−1, tL]. We

refer to t1, . . . , tL−1 as knots and choose tl = l/L for all l = 1, . . . , L in our empirical

application. Because we apply the rank transformation to the characteristics, the knots

correspond to quantiles of the characteristic distribution and we can think of Ĩl as the lth

portfolio.

To estimate m̃t, we use quadratic splines; that is, we approximate m̃t as a quadratic

function on each interval Ĩl. We choose these functions so that the endpoints are connected

and m̃t is differentiable on [0, 1]. We can approximate each m̃ts by a series expansion with

these properties, i.e.,

m̃ts(c̃) ≈
L+2∑
k=1

βtskpk(c̃), (4)

20The “adaptive” part indicates a two-step procedure, because the LASSO selects too many
characteristics in the first step and is therefore not model-selection consistent unless restrictive conditions
on the design matrix are satisfied (see Meinshausen and Bühlmann (2006) and Zou (2006) for an in-depth
treatment of the LASSO in the linear model).
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where pk(c) are known basis functions.21

The number of intervals L is a user-specified smoothing parameter, similar to the

number of portfolios. As L increases, the precision of the approximation increases, but so

does the number of parameters we have to estimate and hence the variance. Recall that

portfolio sorts can be interpreted as approximating the conditional mean function as a

constant function over L intervals. Our estimator is a smooth and more flexible estimator,

but follows a similar idea (see again Figures 4 – 6).

We now discuss the two steps of the adaptive group LASSO. In the first step, we

obtain estimates of the coefficients as

β̃t = arg min
bsk:s=1,...,S;k=1,...,L+2

N∑
i=1

(
Rit −

S∑
s=1

L+2∑
k=1

bskpk(C̃s,it−1)

)2

+ λ1

S∑
s=1

(
L+2∑
k=1

b2
sk

) 1
2

, (5)

where β̃t is an (L+ 2)× S vector of bsk estimates and λ1 is a penalty parameter.

The first part of equation (5) is just the sum of the squared residuals as in ordinary

least squares regressions; the second part is the LASSO group penalty function. Rather

than penalizing individual coefficients, bsk, the LASSO penalizes all coefficients associated

with a given characteristic. Thus, we can set the point estimates of an entire expansion

of m̃t to 0 when a given characteristic does not provide independent information for

expected returns. Due to the penalty, the LASSO is applicable even when the number

of characteristics is larger than the sample size. In the application, we choose λ1 in a

data-dependent way to minimize a Bayes Information Criterion (BIC) proposed by Yuan

and Lin (2006).

However, as in a linear model, the first step of the LASSO selects too many

characteristics. Informally speaking, the LASSO selects all characteristics that predict

returns, but also selects some characteristics that have no predictive power. A second

step addresses this problem.

21In particular, p1(c) = 1, p2(c) = c, p3(c) = c2, and pk(c) = max{c − tk−3, 0}2 for k = 4, . . . , L + 2.
See Chen (2007) for an overview of series estimation.
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We first define the following weights:

ws =


(∑L+2

k=1 β̃
2
sk

)− 1
2

if
∑L+2

k=1 β̃
2
sk 6= 0

∞ if
∑L+2

k=1 β̃
2
sk = 0.

(6)

Intuitively, these weights guarantee we do not select any characteristic in the second step

that we did not select in the first step.

In the second step of the adaptive group LASSO, we solve

β̆t = arg min
bsk:s=1,...,S;k=1,...,L+2

N∑
i=1

(
Rit −

S∑
s=1

L+2∑
k=1

bskpk(C̃s,it−1)

)2

+ λ2

S∑
s=1

(
ws

L+2∑
k=1

b2
sk

) 1
2

. (7)

We again choose λ2 to minimize a BIC.

Huang et al. (2010) show β̆t is model-selection consistent; that is, it correctly selects

the non-constant functions with probability approaching 1 as the sample size grows large.

However, the estimators have unfavorable statistical properties because they are not oracle

efficient. We re-estimate the model for the selected characteristics with OLS to address

this problem.

Denote the estimated coefficients for characteristic s by β̂ts. The estimator of the

function m̃ts is then ̂̃mts(c̃) =
L+2∑
k=1

β̂tskpk(c̃).

If the cross section is sufficiently large, model selection and estimation can

be performed period by period. Hence, the method allows for the importance of

characteristics and the shape of the conditional mean function to vary over time. For

example, some characteristics might lose their predictive power for expected returns.

McLean and Pontiff (2016) show that for 97 return predictors, predictability decreases

by 58% post publication. However, if the conditional mean function was time-invariant,

pooling the data across time would lead to more precise estimates of the function and

therefore more reliable predictions. In our empirical application in Section V, we estimate

our model over subsamples and also estimate rolling specifications to investigate the

variation in the conditional mean function over time.
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E Confidence Bands

We also report uniform confidence bands for the functions m̃ts. We approximate m̃ts(c̃)

by
∑L+2

k=1 βtskpk(c̃) and estimate it by
∑L+2

k=1 β̂tskpk(c̃).

Let p(c̃) = (p1(c̃), . . . , pL+2(c̃))′ be the vector of spline functions and let Σts be the

L+ 2×L+ 2 covariance matrix of
√
n(β̂ts−βts). We define Σ̂ts as the heteroscedasticity-

consistent estimator of Σts and define σ̂ts(c̃) =

√
p(c̃)′Σ̂tsp(c̃).

The uniform confidence band for m̃ts is of the form[
L+2∑
k=1

β̂tskpk(c̃)− dtsσ̂ts(c̃) ,
L+2∑
k=1

β̂tskpk(c̃) + dtsσ̂ts(c̃)

]
,

where dts is a constant.

To choose the constant, let Z ∼ N(0, Σ̂ts) and let dts be such that

P

 sup
c̃∈[0,1]

∣∣∣∣∣∣ Z ′p(c̃)√
p(c̃)′Σ̂tsp(c̃)

∣∣∣∣∣∣ ≤ dts

 = 1− α.

We can calculate the probability on the left-hand side using simulations.

Given consistent model selection and under the conditions in Belloni, Chernozhukov,

Chetverikov, and Kato (2015), it follows that

P

(
m̃ts(c̃) ∈

[
L+2∑
k=1

β̂tskpk(c̃)− dtsσ̂ts(c̃) ,
L+2∑
k=1

β̂tskpk(c̃) + dtsσ̂ts(c̃)

]
∀c̃ ∈ [0, 1]

)
→ 1− α

as the sample size increases.

F Interpretation of the Conditional Mean Function

In a nonparametric additive model, the locations of the functions are not identified.

Consider the following example. Let αs be S constants such that

S∑
s=1

αs = 0.
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Then,

m̃t(c̃1, . . . , c̃S) =
S∑

s=1

m̃ts(c̃s) =
S∑

s=1

(m̃ts(c̃s) + αs) .

Therefore, the summands of the transformed conditional mean function, m̃s, are only

identified up to a constant. The model-selection procedure, expected returns, and the

portfolios we construct do not depend on these constants. However, the constants matter

when we plot an estimate of the conditional mean function for one characteristic, m̃s. We

now discuss two possible normalizations.

Let c̄s be a fixed value of a given transformed characteristic s, such as the mean or

the median. Then,

m̃t(c̃1, c̄2 . . . , c̄S) = m̃t1(c̃1) +
S∑

s=2

m̃ts(c̄s),

which is identified and a function of c̃1 only. This function is the expected return as a

function of the first characteristic when we fix the values of all other characteristics. When

we set the other characteristics to different values, we change the level of the function,

but not the slope. We will report these functions in our empirical section, and we can

interpret both the level and the slope of the function.

An alternative normalization is m̃1(0.5) = 0. The conditional mean function for

a characteristic now takes the value of 0 for the median observation. Now, we cannot

interpret the level of the function. This normalization, however, is easier to interpret when

we plot the estimated functions over time in a three-dimensional surface plot. Changes

in the slope over time now tell us the relative importance of the characteristic in the time

series. The first normalization has the disadvantage that in years with very low overall

returns, the conditional mean function is much lower. Hence, interpreting the relative

importance of a characteristic over time from surface plots is more complicated when we

use the first normalization.

IV Data

Stock return data come from the Center for Research in Security Prices (CRSP) monthly

stock file. We follow standard conventions and restrict the analysis to common stocks of
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firms incorporated in the United States trading on NYSE, Amex, or Nasdaq with market

prices above USD 5.

Market equity (ME) is the total market capitalization at the firm level. LME is the

total market capitalization at the end of the previous calendar month. LTurnover is the

ratio of total monthly trading volume over total market capitalization at the end of the

previous month. The bid-ask spread (spread) is the average daily bid-ask spread during

the previous month. We also construct lagged returns over the previous month (r2−1), the

previous 12 months leaving out the last month (r12−2), intermediate momentum (r12−7),

and long-run returns from three years ago until last year (r36−13). We follow Frazzini and

Pedersen (2014) in the definition of Beta (Beta), and idiosyncratic volatility (Idio vol)

is the residual from a regression of daily returns on the three Fama and French factors in

the previous month as in Ang, Hodrick, Xing, and Zhang (2006).

Balance-sheet data are from the Standard and Poor’s Compustat database. We define

book equity (BE) as total stockholders’ equity plus deferred taxes and investment tax

credit (if available) minus the book value of preferred stock. Based on availability, we use

the redemption value, liquidation value, or par value (in that order) for the book value

of preferred stock. We prefer the shareholders’ equity number as reported by Compustat.

If these data are not available, we calculate shareholders’ equity as the sum of common

and preferred equity. If neither of the two are available, we define shareholders’ equity as

the difference between total assets and total liabilities. The book-to-market (BM) ratio

of year t is then the book equity for the fiscal year ending in calendar year t − 1 over

the market equity as of December t− 1. We use the book-to-market ratio for estimation

starting in June of year t until May of year t + 1 predicting returns from July of year t

until June of year t. We use the same timing convention for balance-sheet variables unless

we specify it differently.

AT are total assets, ATO are sales scaled by net operating assets, and cash (C)

is cash and short-term investments over total assets. CTO is capital turnover, D2A is

depreciation and amortization over total assets, and DPI2A is the change in property,

plant, and equipment. E2P is the earnings-to-price ratio. We define expenses to sales

(FC2Y) as the sum of advertising expenses; research and development expenses; and
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selling, general, and administrative expenses over sales, and Free CF is net income and

depreciation and amortization less the change in working capital and capex. Investment

is the growth rate in total assets, Lev is the ratio of total debt to total debt and

shareholders’ equity, and NOA are net operating assets to lagged total assets. We define

operating accruals (OA) as in Sloan (1996), and operating leverage (OL) is the ratio of

cost of goods sold and selling, general, and administrative expenses over total assets. We

define the price-to-cost margin (PCM) as sales minus cost of goods sold over sales, the

profit margin (PM) as operating income after depreciation to net sales, gross profitability

(Prof) as gross profits over book value of equity, and Q is Tobin’s Q. Rel to high is

the closeness to the 52-week high price and RNA is the return on net operating assets.

The return-on-assets (ROA) is income before extraordinary items to total assets and the

return-on-equity (ROE) is the ratio of income before extraordinary items to lagged book

value of equity. S2P is the ratio of sales to market capitalization, SGA2S is the ratio of

selling, general, and administrative expenses to net sales, spread is the monthly average

bid-ask spread, and SUV is standardized unexplained volume.

To alleviate a potential survivorship bias due to backfilling, we require that a firm

has at least two years of Compustat data. Our sample period is July 1963 until June 2015.

Table 1 reports summary statistics for various firm characteristics and return predictors.

We calculate all statistics annually and then average over time. On average we have 2.5

million observations in our analysis.

Section I in the online appendix contains a detailed description of the characteristics,

the construction, and the relevant references.

V Results

We now study which of the 36 characteristics we describe in Section IV provide

independent information for expected returns, using the adaptive group LASSO for

selection and estimation.
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A Selected Characteristics and Their Influence

Table 2 reports average annualized returns with standard errors in parentheses of 10

equally-weighted portfolios sorted on the characteristics we study. Most of the 36

characteristics have individually predictive power for expected returns in our sample

period and result in large and statistically significant hedge portfolio returns and alphas

relative to the Fama and French three-factor model (Table 3). Twenty-one sorts have

annualized hedge returns of more than 5%, and 12 characteristics are even associated with

excess returns of more than 10%. Twenty-one characteristics have a t-statistic above 2.

Correcting for exposure to the Fama-French three-factor model has little impact on these

findings. The vast majority of economic models, that is, the ICAPM (Merton (1973))

or consumption-based models, as surveyed in Cochrane (2007), suggest a low number of

state variables can explain the cross section of returns. Therefore, all characteristics are

unlikely to provide independent information for expected returns.

To tackle the multi-dimensionality challenge, we now estimate the adaptive group

LASSO with four, nine, 14, and 19 knots. The number of knots corresponds to the

smoothing parameter we discuss in Section III. Nine knots corresponds to 10 portfolios

in sorts.

Figure 7 and Figure 8 show the mean function, m̃(C̃it−1), for Tobin’s Q, return-

on-assets, profitability, and investment. The left panels report the unconditional mean

functions, whereas the right panels plot the association between the characteristic and

expected returns conditional on all selected characteristics.

Stocks with low Q, low return on assets, investment, but high profitability have higher

expected returns than stocks with high Q, return on assets, investment, or low profitability

unconditionally. These results are consistent with our findings for portfolio sorts in Table

2. Portfolio sorts result in average annualized hedge portfolio returns of around 14%, 5%,

13%, and 6% for sorts on Q, return on assets, investment, and profitability, respectively.

Profitability, Q, and investment also have t-stats relative to the Fama-French three-factor

model substantially larger than the threshold Harvey et al. (2016) suggest (see Table 3).

These characteristics, however, are correlated with other firm characteristics. We now

want to understand whether they have marginal predictive power for expected returns
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conditional on all other firm characteristics we study. We see in the right panels that

the association of these characteristics with expected returns vanishes once we condition

on other stock characteristics. The estimated conditional mean functions are now close

to constant and do not vary with the characteristics. The constant conditional mean

functions imply Q, return on assets, investment, and profitability have no marginal

predictive power for expected returns once we condition on other firm characteristics.

The examples of Tobin’s Q, return-on-asset, profitability, and investment show the

importance of conditioning on other characteristics to infer on the predictive power of

characteristics for expected returns. We now study this question for 36 firm characteristics

using the adaptive group LASSO.

Table 4 reports the selected characteristics of the nonparametric model for different

numbers of knots, sets of firms, and sample periods. We see in column (1) that the

baseline estimation for all stocks over the full sample period using 14 knots selects 15 out

of the universe of 36 firm characteristics. The assets-to-market cap, total assets, beta,

capital intensity, earnings to price, fixed costs to sales, idiosyncratic volatility, lagged

market cap, lagged turnover, the closeness to the 52-week high, momentum, short-term

reversal, long-term reversal, SG&A -to-market cap, and standardized unexplained volume

all provide incremental information conditional on all other selected firm characteristics.

When we allow for a wider grid in column (2) with only nine knots, we also select cash

to total assets, free cash flow, intermediate momentum, and the average bid-ask spread.

We instead select the same characteristics when we impose a finer grid and estimate the

group LASSO with 19 interpolation points (see column (3)).

We estimate the nonparametric model only on large stocks above the 10%-, 20%-,

and 50%-size quintile of NYSE stocks in columns (3) to (5), reducing the sample size

from more than 1 million observations to around 300,000. Assets-to-market cap, total

assets, beta, fixed-costs to sales, and idiosyncratic volatility lose their predictive power

for returns for a sample of firms above the 10%-size threshold compared to all stocks in

column (1), whereas operating accruals becomes a significant return predictor. For firms

above the 20%-size threshold of NYSE firms, we also see capital intensity, earnings to price,

lagged turnover, and momentum lose the predictive power, but intermediate momentum
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becomes a significant return predictor. For the largest firms, only seven characteristics

have significant incremental predictive power for expected returns, including the book-

to-market ratio, the closeness to the high price, past return-based predictors, SG&A to

market cap, and standardized unexplained volume.22

Columns (7) and (8) split our sample in half and re-estimate our benchmark

nonparametric model in both sub-samples separately to see whether the importance of

characteristics for predicted returns varies over time. Only eight characteristics have

predictive power for expected returns in the sample until 1990. All the characteristics

we select in the first half of our sample still provide incremental information for expected

returns in the second half starting in 1991, but now nine additional characteristics gain

predictive power for expected returns.

Size, the closeness to the previous 52-week high, short-term reversal, and standardized

unexplained volume are the most consistent return predictors across different sample

periods, number of interpolation points, and sets of firms. Table A.1 in the online appendix

reports selected characteristics for additional specifications.

Figure 9 and Figure 10 plot the conditional and unconditional mean functions for

short-term reversal, momentum, size, and the assets-to-market-cap ratio. We see in

Figure 9 both for reversal and momentum a more monotonic association between the

characteristic distribution and expected returns once we condition on other characteristics

in the right panel relative to the unconditional association in the left panels. Size matters

for returns for all firms in the right panel of Figure 9 and the conditional association

is more pronounced than the relationship in the left panel. This finding is reminiscent

of Asness, Frazzini, Israel, Moskowitz, and Pedersen (2015), who argue “size matters,

if you control your junk”. We see in the lower panels, the assets-to-market-cap ratio is

unconditionally positively associated with expected returns. Once we condition on other

characteristics, though, the association flips sign, and stocks with a high ratio have lower

expected returns compared to stocks with a lower ratio.

Figure 11 plots the conditional and unconditional mean functions for the book-to-

22The number of knots increases with the sample size. The penalty function instead increases in the
number of knots. In the nonparametric model with nine knots, the penalty is proportional to 12 times
the number of selected characteristics, which is why we select fewer characteristics with more knots.
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market ratio and idiosyncratic volatility. Both book-to-market and idiosyncratic volatility

have a monotonic, positive unconditional association with expected returns across the

whole characteristic distribution. Conditional on other characteristics, book-to-market

loses the predictive power for returns and only stocks with the highest idiosyncratic

volatility are significantly associated with returns.

This section shows that many of the univariate significant return predictors do not

provide incremental predictive power for expected returns once we condition on other

stock characteristics.

B Time Variation in Return Predictors

McLean and Pontiff (2016) document substantial variation over time in the predictive

power of many characteristics for expected returns. Figure 12 to Figure 15 show the

conditional mean function for our baseline nonparametric model for all stocks and nine

knots over time. We perform model selection on the first 10 years of data. We then

fix the selected characteristics and estimate the nonparametric model on a rolling basis

using 10 years of data. We normalize the conditional mean function to equal 0 when the

normalized characteristic equals 0.5 (the median characteristic in a given month).

We see in Figure 12 that the conditional mean function is non-constant throughout

the sample period for lagged market cap. Small firms have higher expected

returns compared to large firms, conditional on all other significant return predictors.

Interestingly, the size effect seems largest during the end of our sample period, contrary

to conventional wisdom (see Asness et al. (2015) for a related finding). The bottom panel

shows that firms with higher total assets have higher expected returns conditional on

other firm characteristics, contrary to the unconditional association (see Table 2).

We see in the top panel of Figure 13 that intermediate momentum has a significant

conditional association with expected returns throughout the sample period. Interestingly,

past intermediate losers tend to outperform once we condition on other characteristics.

In the bottom panel, we see momentum lost part of the predictive power for expected

returns in the more recent period because of high returns of past losers, consistent with

findings in Daniel and Moskowitz (2016).
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Figure 14 shows the effect of long-term reversal on expected returns has been

strongest in the modern sample period because past losers tend to appreciate more than

they did historically. The bottom panel shows the association of idiosyncratic volatility

and returns has been flat until the early 1990s and only afterwards did stocks with the

highest level of idiosyncratic volatility earn substantially higher returns than all other

stocks.

C Out-of-Sample Performance and Model Comparison

We argued in Section II that the nonparametric method we propose overcomes potential

shortcomings of more traditional methods, and show potential advantages of the adaptive

group LASSO in simulations.

We now want to compare the performance of the nonparametric model with the linear

model out of sample. The out-of-sample context ensures that in-sample overfit does not

explain a potentially superior performance of the nonparametric model.

We estimate the nonparametric model for a period from 1963 to 1990 and carry

out model selection with the adaptive group LASSO with nine knots, but also use the

adaptive LASSO for model selection in the linear model over the same sample period and

with the same number of knots. We then use 10 years of data to estimate the model

on the selected characteristics. In the next months, we take the selected characteristics

and predict one-month-ahead returns and construct a hedge portfolio going long stocks

with the 10% highest predicted returns and shorting stocks with the 10% lowest predicted

returns. We roll the estimation and prediction period forward by one month and repeat

the procedure until the end of the sample.

Specifically, in our first out-of-sample predictions, we use return data from January

1981 until December 1990 and characteristics data from December 1980 until November

1990 to get estimators β̂.23 We then take the estimated coefficients and characteristics

data from January 1981 until December 1990 to predict returns for January 1991 and

form two portfolios for each method. We buy the stocks with the 10% highest expected

23To be more precise, for returns until June 1981, many of the balance-sheet variables will be from the
fiscal year ending in 1979.
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returns and sell the stocks with the 10% lowest predicted returns. We then move our

estimation sample forward by one month from February 1981 until January 1991, get new

estimators β̂, and predict returns for February 1991.

Table 5 reports the out-of-sample Sharpe ratios for both the nonparametric and linear

models for different sample periods, number of knots, and equally- and value-weighted

portfolios. For a sample from 1991 to 2014 and nine knots, the nonparametric model

generates an out-of-sample Sharpe ratio for an equally-weighted hedge portfolio of 3.42

compared to 2.26 for the linear model (compare columns (1) and (3)).24 The linear model

selects 21 characteristics in sample compared to only eight for the nonparametric model,

but performs worse out of sample.25

We see a substantial drop in out-of-sample Sharpe ratios both for the nonparametric

and linear model when we study value-weighted portfolios (see columns (2) and (4)). The

difference in Sharpe ratios between value- and equally-weighted portfolios is similar to

Lewellen (2015), who finds Sharpe ratios of value-weighted portfolios 50% smaller than

the equally-weighted counterpart. Most studies in empirical finance winsorize the data,

including size. When we winsorize size at the 1% and 5% levels, we find out-of-sample

value-weighted Sharpe ratios of 1.38 and 1.73 for the nonparametric model (results not

reported).

Column (5) studies a linear model that also employs the rank transformation we

discuss in Section III. The linear model now selects even 27 of the 36 characteristics,

but the out-of-sample Sharpe ratio is similar to the linear model for non-transformed

characteristics.

Nonlinearities are important. We find an increase in out-of-sample Sharpe ratios

relative to the Sharpe ratio of the linear model when we employ the nonparametric model

for prediction on the 21 characteristics the linear model selects (see column (6)). The

linear model appears to overfit the data in sample. The Sharpe ratio for the linear model

when we use the eight characteristics we select with the nonparametric model is identical

24The linear model we estimate and the results are similar to Lewellen (2015). Specifically, he finds
for a linear model out-of-sample Sharpe ratios of 1.65 and 0.85 for equally- and value-weighted hedge
portfolios and an out-of-sample period of 1974 to 2013.

25The linear model might be misspecified and therefore select more variables (see discussion and
simulation results in Section III).
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to the one we find when we use the 21 characteristics the linear model selects (see column

(7)).

We see in columns (8) and (9) that Sharpe ratios drop by more than 50% for both

models when we exclude firms below the 10th percentile of NYSE stocks (around 200,000

firm-months observations out of 650,000). Lewellen (2015) also finds Sharpe ratios for an

equally-weighted hedge portfolio that are lower by 50% when he excludes “all but tiny

stocks.” Columns (10) to (12) show Sharpe ratios larger than 3 for an out-of-sample

period starting in 1975 using the first 10 years for model selection and estimation and for

our baseline sample starting in 1991, or using 4 or 14 knots rather than 9 as in column

(1).

We also studied whether the return forecasts of the nonparametric model actually

picks up cross-sectional variation in ex-post realized returns at the firm level. A return

estimate that provides an unbiased forecast of returns should predict ex-post returns

with a slope of 1. For all stocks and a sample from 1991 until 2014, we find the return

forecasts from the nonparametric model have a slope estimate of 0.78 and explain 3.11%

of the ex-post variation in returns at the firm level. These estimates compare favorably

to Lewellen (2015), who typically finds smaller point estimates and R2s of below 1%.

VI Conclusion

We propose a nonparametric method to tackle the challenge posed by Cochrane (2011)

in his presidential address, namely, which firm characteristics provide independent

information for expected returns. We use the adaptive group LASSO to select significant

return predictors and to estimate the model.

We document the properties of our framework in three applications: (i) Which

characteristics have incremental forecasting power for expected returns? (ii) Does the

predictive power of characteristics vary over time? (iii) How does the nonparametric

model compare to a linear model out of sample?

Our results are as follows: (i) Out of 36 characteristics, only 7 to 15 provide

independent information depending on the number of interpolation points (similar to
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the number of portfolios in portfolio sorts), sample period, and universe of stocks (large

versus small stocks). (ii) Substantial time variation is present in the predictive power of

characteristics. (iii) The nonparametric model selects fewer characteristics than the linear

model in sample and has a 50% higher Sharpe ratio out of sample.

We see our paper as a starting point only and ask the following questions. Are the

characteristics we identify related to factor exposures? How many factors are important?

Can we achieve a dimension reduction and identify K factors that can summarize the N

independent dimensions of expected returns with K << N similar to Fama and French

(1993) and Fama and French (1996)?
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Figure 2: Numbers of published Factors
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Factors and publications.

period from 1980 to 1991, only about one factor is discovered per year. This
number has grown to around five for the 1991–2003 period, during which
time a number of papers, such as Fama and French (1992), Carhart (1997),
and Pastor and Stambaugh (2003), spurred interest in studying cross-sectional
return patterns. In the last nine years, the annual factor discovery rate has
increased sharply to around 18. In total, 164 factors were discovered in the past
nine years, roughly doubling the 84 factors discovered in all previous years. We
do not include working papers in Figure 2. In our sample, there are 63 working
papers covering 68 factors.

We obtain t-statistics for each of the 316 factors discovered, including the
ones in the working papers.26 The overwhelming majority of t-statistics exceed
the 1.96 benchmark for 5% significance.27 The nonsignificant ones typically
belong to papers that propose a number of factors. These likely represent
only a small subsample of nonsignificant t-statistics for all tried factors.
Importantly, we take published t-statistics as given. That is, we assume they are
econometrically sound with respect to the usual suspects (data errors, coding
errors, misalignment, heteroscedasticity, autocorrelation, clustering, outliers,
etc.).

26 The sign of a t-statistic depends on the direction of the long/short strategy. We usually calculate p-values based
on two-sided t-tests, so the sign does not matter. From an investment perspective, the sign of the mean return of
a long/short strategy does not matter as we can always reverse the direction of the strategy. Therefore we use
absolute values of these t-statistics.

27 The multiple testing framework is robust to outliers. The procedures are based on either the total number of tests
(Bonferroni) or the order statistics of t-statistics (Holm and BHY).
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Figure 3: Suggested t-stats adjustment
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Figure 4: 5 Portfolios sorted on Book-to-Market
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This figure plots expected returns on the y-axis against the book-to-market ratio on

the x-axis as well as portfolio mean returns for simulated data.
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Figure 5: 5 Portfolios sorted on Book-to-Market and nonparametric Estimator
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This figure plots expected returns on the y-axis against the book-to-market ratio on

the x-axis as well as portfolio mean returns and a nonparametric conditional mean

function for simulated data.
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Figure 6: 10 Portfolios sorted on Book-to-Market and nonparametric Estimator

Portfolios Sorted on Book{to{Market

M
o
n
th

ly
R

e
tu

rn
s

Quadratic
Spline

1 2 3 4 5 6 7 8 9 10

Portfolio
Mean

Stock

This figure plots expected returns on the y-axis against the book-to-market ratio on

the x-axis as well as portfolio mean returns and a nonparametric conditional mean

function for simulated data.
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Figure 7: Unconditional and Conditional Mean Function: Tobin’s Q (Q) and
Return on Assets (ROA)
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Effect of normalized Tobin’s Q (Q) and return-on-assets (ROA) on average

returns (see equation (3)). The left panels report unconditional associations

between a characteristic and returns, and the right panels report associations

conditional on all other selected characteristics. The sample period is July 1963

to June 2015. See Section IV for variable definitions.
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Figure 8: Unconditional and Conditional Mean Function: Profitability (Prof)
and Investment

Prof
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Effect of normalized profitability (Prof) and investment (Investment) on average

returns (see equation (3)). The left panels report unconditional associations

between a characteristic and returns and the right panels report associations

conditional on all other selected characteristics. The sample period is July 1963

to June 2015. See Section IV for variable definitions.
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Figure 9: Unconditional and Conditional Mean Function: Short-Term Reversal
(r2−1) and Momentum (r12−2)
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Effect of normalized short-term reversal (r2−1) and momentum (r12−2) on average

returns (see equation (3)). The left panels report unconditional associations

between a characteristic and returns, and the right panels report associations

conditional on all other selected characteristics. The sample period is July 1963

to June 2015. See Section IV for variable definitions.
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Figure 10: Unconditional and Conditional Mean Function: Size (LME) and
Assets-to-Market Cap (A2ME)
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Effect of normalized size (LME) and assets-to-market cap (A2ME) on average

returns (see equation (3)). The left panels report unconditional associations

between a characteristic and returns, and the right panels report associations

conditional on all other selected characteristics. The sample period is July 1963

to June 2015. See Section IV for variable definitions.
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Figure 11: Unconditional and Conditional Mean Function: Book-to-Market
(BEME) and Idiosyncratic Volatility (Idio vol)

BEME
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Effect of normalized book-to-market (BEME) and idiosyncratic volatility (Idio

vol) on average returns (see equation (3)). The left panels report unconditional

associations between a characteristic and returns and the right panels report

associations conditional on all other selected characteristics. The sample period is

July 1963 to June 2015. See Section IV for variable definitions.
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Figure 12: Time-varying Conditional Mean Function: Size (LME) and Total
Assets (AT)

Effect of normalized size (LME) and total assets (AT) on average returns over

time (see equation (3)) conditional on all other selected characteristics. The

sample period is July 1963 to June 2015. See Section IV for variable definitions.
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Figure 13: Time-varying Conditional Mean Function: Intermediate Momentum
(r12−7) and Standard Momentum (r12−2)

Effect of normalized intermediate momentum (r12−7) and standard momentum

(r12−2) on average returns over time (see equation (3)) conditional on all other

selected characteristics. The sample period is July 1963 to June 2015. See Section

IV for variable definitions.
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Figure 14: Time-varying Conditional Mean Function: Long-Term Reversal
(r36−13) and Idiosyncratic Volatility (Idio vol)

Effect of normalized long-term reversal (r36−13) and idiosyncratic volatility (Idio

vol) on average returns over time (see equation (3)) conditional on all other

selected characteristics. The sample period is July 1963 to June 2015. See Section

IV for variable definitions.
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Figure 15: Time-varying Conditional Mean Function: Earnings-to-Price Ratio
(E2P) and Relative to High Price (Rel to High)

Effect of normalized earnings-to-price ratio (E2P) and relative to high price (Rel

to High) on average returns over time (see equation (3)) conditional on all other

selected characteristics. The sample period is July 1963 to June 2015. See Section

IV for variable definitions.
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Table 5: Out-of-Sample Sharpe Ratios

This table reports out-of-sample (oos) Sharpe Ratios of hedge portfolios going long the 10% of stocks with highest

predicted returns and shorting the 10% of stocks with lowest predicted return for different sets of firms, out-of-sample

periods, number of interpolation points, the nonparametric and linear models, and equally- and value-weighted

returns. q indicates the size percentile of NYSE firms. We perform model selection from July 1963 until the

months before start of the out-of-sample prediction.

(1) (2) (3) (4) (5) (6)

Firms All All All All All All

oos period 1991-2014 1991-2014 1991-2014 1991-2014 1991-2014 1991-2014

Knots 9 9 9 9 9 9

Sample Size 656,067 656,067 656,067 656,067 656,067 656,067

Model NP NP Linear Linear Linear-trans NP

# Selected 8 8 21 21 27 21

Model for Selection NP NP Linear Linear Linear-trans Linear

Sharpe Ratio 3.42 1.24 2.26 1.01 2.43 2.40

Weighting Equal Value Equal Value Equal Equal

(7) (8) (9) (10) (11) (12)

Firms All Size > q10 Size > q10 All All All

oos period 1991-2014 1991-2014 1991-2014 1975-2014 1991-2014 1991-2014

Knots 9 9 9 4 4 14

Sample Size 656,067 462,321 462,321 963,112 656,067 656,067

Model Linear NP Linear NP NP NP

# Selected 8 5 20 9 14 7

Model for Selection NP NP Linear NP NP NP

Sharpe Ratio 2.23 1.33 0.93 3.30 3.16 3.28

Weighting Equal Equal Equal Equal Equal Equal
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Online Appendix:
Dissecting Characteristics Nonparametrically

Joachim Freyberger, Andreas Neuhierl, and Michael Weber

Not for Publication

I Data

This section details the construction of variables we use in the main body of the paper
with CRSP and Compustat variable names in parentheses and the relevant references.
Unless otherwise specified, we use balance-sheet data from the fiscal year ending in year
t− 1 for returns from July of year t to June of year t+ 1 following the Fama and French
(1993) timing convention.

A2ME: We follow Bhandari (1988) and define assets-to-market cap as total assets
(AT) over market capitalization as of December t-1. Market capitalization is the product
of shares outstanding (SHROUT) and price (PRC).

AT Total assets (AT) as in Gandhi and Lustig (2015).

ATO: Net sales over lagged net operating assets as in Soliman (2008). Net operating
assets are the difference between operating assets and operating liabilities. Operating
assets are total assets (AT) minus cash and short-term investments (CHE), minus
investment and other advances (IVAO). Operating liabilities are total assets (AT), minus
debt in current liabilities (DLC), minus long-term debt (DLTT), minus minority interest
(MIB), minus preferred stock (PSTK), minus common equity (CEQ).

BEME: Ratio of book value of equity to market value of equity. Book equity
is shareholder equity (SH) plus deferred taxes and investment tax credit (TXDITC),
minus preferred stock (PS). SH is shareholders’ equity (SEQ). If missing, SH is the
sum of common equity (CEQ) and preferred stock (PS). If missing, SH is the difference
between total assets (AT) and total liabilities (LT). Depending on availability, we use
the redemption (item PSTKRV), liquidating (item PSTKL), or par value (item PSTK)
for PS. The market value of equity is as of December t-1. The market value of equity is
the product of shares outstanding (SHROUT) and price (PRC). See Rosenberg, Reid,
and Lanstein (1985) and Davis, Fama, and French (2000).

Beta: We follow Frazzini and Pedersen (2014) and define the CAPM beta as
product of correlations between the excess return of stock i and the market excess return
and the ratio of volatilities. We calculate volatilities from the standard deviations of
daily log excess returns over a one-year horizon requiring at least 120 observations. We
estimate correlations using overlapping three-day log excess returns over a five-year
period requiring at least 750 non-missing observations.
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C: Ratio of cash and short-term investments (CHE) to total assets (AT) as in
Palazzo (2012).

CTO: We follow Haugen and Baker (1996) and define capital turnover as ratio of
net sales (SALE) to lagged total assets (AT).

D2A: Capital intensity is the ratio of depreciation and amortization (DP) to total
assets (AT) as in Gorodnichenko and Weber (2016).

DPI2A: We define the change in property, plants, and equipment following
Lyandres, Sun, and Zhang (2008) as changes in property, plants, and equipment
(PPEGT) and inventory (INVT) over lagged total assets (TA).

E2P: We follow Basu (1983) and define earnings to price as the ratio of income
before extraordinary items (IB) to the market capitalization as of December t-1. Market
capitalization is the product of shares outstanding (SHROUT) and price (PRC).

FC2Y: We define fixed costs to sales following D’Acunto, Liu, Pflueger, and Weber
(2016) as ratio of selling, general, and administrative expenses (XSGS), research and
development expenses (XRD), and advertising expenses (XAD) to net sales (SALE).

Free CF: Cash flow to book value of equity is the ratio of net income (NI),
depreciation and amortization (DP), less change in working capital (WCAPCH), and
capital expenditure (CAPX) over the book-value of equity defined as in the construction
of BEME (see Hou et al. (2011)).

Idio vol: Idiosyncratic volatility is the standard deviation of the residuals from a
regression of excess returns on the Fama and French (1993) three-factor model as in Ang,
Hodrick, Xing, and Zhang (2006). We use one month of daily data and require at least
fifteen non-missing observations.

Investment: We define investment as the percentage year-on-year growth rate in
total assets (AT) following Cooper, Gulen, and Schill (2008).

Lev: Leverage is the ratio of long-term debt (DLTT) and debt in current liabilities
(DLC) to the sum of long-term debt, debt in current liabilities, and stockholders’ equity
(SEQ) following Lewellen (2015).

LME: Size is the total market capitalization of the previous month defined as price
(PRC) times shares outstanding (SHROUT) as in Fama and French (1992).

LTurnover: Turnover is last month’s volume (VOL) over shares outstanding
(SHROUT) (Datar, Naik, and Radcliffe (1998)).

NOA: Net operating assets are the difference between operating assets minus

2



operating liabilities scaled by lagged total assets as in Hirshleifer, Hou, Teoh, and Zhang
(2004). Operating assets are total assets (AT) minus cash and short-term investments
(CHE), minus investment and other advances (IVAO). Operating liabilities are total
assets (AT), minus debt in current liabilities (DLC), minus long-term debt (DLTT),
minus minority interest (MIB), minus preferred stock (PSTK), minus common equity
(CEQ).

OA: We follow Sloan (1996) and define operating accruals as changes in non-cash
working capital minus depreciation (DP) scaled by lagged total assets (TA). Non-cash
working capital is the difference between non-cash current assets and current liabilities
(LCT), debt in current liabilities (DLC) and income taxes payable (TXP). Non-cash
current assets are current assets (ACT) minus cash and short-term investments (CHE).

OL: Operating leverage is the sum of cost of goods sold (COGS) and selling, general,
and administrative expenses (XSGA) over total assets as in Novy-Marx (2011).

PCM: The price-to-cost margin is the difference between net sales (SALE) and costs
of goods sold (COGS) divided by net sales (SALE) as in Bustamante and Donangelo
(2016).

PM: The profit margin is operating income after depreciation (OIADP) over net
sales (SALE) as in Soliman (2008).

Prof: We follow Ball, Gerakos, Linnainmaa, and Nikolaev (2015) and define
profitability as gross profitability (GP) divided by the book value of equity as defined
above.

Q: Tobin’s Q is total assets (AT), the market value of equity (SHROUT times PRC)
minus cash and short-term investments (CEQ), minus deferred taxes (TXDB) scaled by
total assets (AT).

Rel to High: Closeness to 52-week high is the ratio of stock price (PRC) at the
end of the previous calendar month and the previous 52 week high price defined as in
George and Hwang (2004).

RNA: The return on net operating assets is the ratio of operating income after
depreciation to lagged net operating assets (Soliman (2008)). Net operating assets are
the difference between operating assets minus operating liabilities. Operating assets are
total assets (AT) minus cash and short-term investments (CHE), minus investment and
other advances (IVAO). Operating liabilities are total assets (AT), minus debt in current
liabilities (DLC), minus long-term debt (DLTT), minus minority interest (MIB), minus
preferred stock (PSTK), minus common equity (CEQ).

ROA: Return-on-assets is income before extraordinary items (IB) to lagged total
assets (AT) following Balakrishnan, Bartov, and Faurel (2010).

3



ROE: Return-on-equity is income before extraordinary items (IB) to lagged
book-value of equity as in Haugen and Baker (1996).

r12−2 : We define momentum as cumulative return from 12 months before the return
prediction to two months before as in Fama and French (1996).

r12−7 : We define intermediate momentum as cumulative return from 12 months
before the return prediction to seven months before as in Novy-Marx (2012).

r2−1 : We define short-term reversal as lagged one-month return as in Jegadeesh
(1990).

r36−13 : Long-term reversal is the cumulative return from 36 months before the
return prediction to 13 months before as in De Bondt and Thaler (1985).

S2P: Sales-to-price is the ratio of net sales (SALE) to the market capitalization as
of December following Lewellen (2015).

SGA2S: SG&A to sales is the ratio of selling, general and administrative expenses
(XSGA) to net sales (SALE).

Spread: The bid-ask spread is the average daily bid-ask spread in the previous
months as in Chung and Zhang (2014).

SUV: Standard unexplained volume is difference between actual volume and
predicted volume in the previous month. Predicted volume comes from a regression
of daily volume on a constant and the absolute values of positive and negative returns.
Unexplained volume is standardized by the standard deviation of the residuals from the
regression as in Garfinkel (2009).
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