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Abstract

We develop an equilibrium pricing model aimed at explaining observed characteristics in equity

returns, VIX futures and VIX options data. To derive our model we first specify a general frame-

work based on affine jump-diffusive state-dynamics and representative agent endowed with Duffie-

Epstein recursive utility. This allows us to derive moments of equity returns under the objective and

risk-neutral measures, and subsequently semi-closed form solutions to prices of equity options, VIX

futures, and VIX options. We calibrate this model to fit the salient features of the data, including

moments of consumption and equity returns, variance premium, and various features of VIX deriva-

tives data. The model matches the extremely right-skewed volatility smiles seen in VIX options, a

downward-sloping term structure of implied Black’76 volatilities, large negative rates of return on

VIX futures, and large VIX option risk premia. It also matches other characteristics of VIX options

data, including time-variation in the shape of implied volatilities.
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1 Introduction

While most derivatives trading now takes place electronically there were two major open outcry pits

left at the CBOE in 2019: S&P 500 (SPX) options and VIX options. The VIX index, which is itself

computed from SPX option prices, has in recent years become an increasingly important underlying for

derivatives traders. It is not hard to see the appeal of VIX derivatives for someone who is seeking to

hedge against market turmoil: VIX returns are strongly negatively correlated with SPX returns, and

thus, a long VIX position is a negative β investment that offers diversification/ hedging benefits to

investors with positive market exposure. Since the VIX index itself is not directly investable, investors

rely on derivatives to obtain VIX exposure.

The main objective of this paper is to try to understand the pricing of VIX derivatives from the

viewpoint of an equilibrium model. In particular, we are interested to see if it is possible to design

an equilibrium model that reproduces the salient features of the VIX futures and options data, SPX

returns data, and consumption data. To do so we derive a model where a representative agent is en-

dowed with Duffie-Epstein recursive utility and faces an endowment process with time-varying volatility

(σt) and jumping volatility to volatility with time-varying intensity (λt). The exogenous shocks to con-

sumption and its higher order moments drive asset prices. Specifically, the aggregative stock market

value obtains as the present value of a levered claim to consumption, as in Bansal and Yaron (2004).

In equilibrium, shocks that lead to higher uncertainty lower stock-market valuations, as to generate a

higher conditional expected rate of return. This volatility-feedback effect endogenizes the negative con-

temporaneous return-volatility correlation (sometimes referred to as the leverage effect) that is observed

to be very strong in the data. The model also endogenizes the stock market volatility itself, and by ex-

tension, the forward-looking expected stock market volatility. Since the VIX index is interpretable as a

conditional risk-neutral 30 day forward-looking estimate of market volatility, the model is interpretable

as an equilibrium model of VIX. We use the property of the conditional cumulant generating function

for log stock price to obtain an explicit expression (up to ODEs) for equilibrium VIX, and then use a

Fourier-type payoff transform analysis to derive a semi-closed form (up to a single integral) formula for

the value of VIX options.

While there are countless studies of equity options market data, relatively fewer papers study VIX

options. Menćıa and Sentana (2013) use a panel of VIX futures and options to fit a no-arbitrage based

time-series model. Park (2015) uses SPX and VIX options information to predict market returns (SPX),

VIX futures returns, SPX and VIX options returns. Huang, Schlag, Shaliastovich, and Thimme (2019)

derive a diffusion-based no-arbitrage model to explain negative delta-hedged VIX options returns. Both
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papers conclude that volatility of volatility risk is priced with a negative market risk price. Park (2016)

specifies a reduced form model for VIX directly in order to price derivatives.

Compared with previous studies, this paper provides three contributions. First, we present reduced-

form empirical evidence on VIX options prices. Second, we develop a general, perfectly tractable frame-

work for pricing assets, especially derivatives with arbitrary state-dependent payoffs, in a continuous-

time affine economy where the representative agent has Duffie-Epstein preferences. Third, conveniently

applying the results in the general framework we develop an equilibrium pricing model for VIX options

and calibrate it to fit and reconcile salient features of the data on macro quantities as well as on a wide

spectrum of assets markets. We describe these contributions in turn.

Our reduced form empirical analysis has two parts. We first seek to understand some basic prop-

erties of ex-ante pricing information, including the patterns of implied Black (’76) volatility surfaces.

Among the interesting features of implied volatility data are the facts that they imply a severe rightly

skewed risk-neutral distribution of VIX “returns”. The right skewed distribution contrasts equity return

distributions which tend to be negatively skewed, as with the SPX. It is much more heavily skewed to

the right than SPX returns are skewed to the left. Secondly, unlike equity options, VIX options display

a downward sloping term structure: longer term VIX options have lower implied Black volatility than do

short maturity ones. This persuasive feature persists irrespective of strikes and market conditions (i.e.,

high or low VIX), and is very pronounced. As we will show, the pattern is related to mean-reversion in

VIX and lack thereof in the distributional assumptions underlying (Black ’76) implied volatility com-

putation. Third, shocks to implied volatility of volatility is positively, but imperfectly correlated with

the level of VIX itself. This actually rules out single factor representations such as the Heston (1993)

CIR diffusion for conditional variance.

The second element of our reduced-form empirical evidence is a look at ex-post realized VIX options

returns. Huang, Schlag, Shaliastovich, and Thimme (2019) find that delta-hedged VIX options returns

are statistically significantly negative on average. Their interpretation is that after controlling for

directional volatility risk, volatility-of-volatility risk is priced. We compute average rates of return on

VIX calls and find them to be negative, although not statistically significantly so. The average returns

on puts are mostly statistically significantly positive. A long call position gives the buyer a positive

volatility exposure. We can think of the underlying for the options as being the VIX futures and thus,

since VIX futures yield average rates of return that are somewhere in the -30% to -40% range per annum

(see Eraker and Wu (2017)), calls (puts) should have negative (positive) expected return. Our analysis

confirms this.
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Regarding the paper’s second contribution, we develope a general consumption-based, affine equilib-

rium pricing model coupled with recursive preferences. In it, a group of broadly defined state variables,

always including consumption endowment, follow an jump-diffusive affine structure, and the representa-

tive agent has Duffie-Epstein preferences with the IES being set at one for tractability. In this respect,

it is similar to the models of Eraker and Shaliastovich (2008), Benzoni, Collin-Dufresne, and Goldstein

(2011) and Tsai and Wachter (2018). In fact, we show that the state-price density approximately solved

in Eraker and Shaliastovich (2008) under the help of log-linearization techniques exactly converges

to that in our model as the IES approaches one. For our purposes, very important is the recursive

preference assumption, which guarantees that state variables as higher-order conditional moments of

consumption, such as its growth volatility and volatility of volatility, etc, are priced in equilibrium,

which is further essential for generating non-zero premia on VIX derivatives. This is because as a mea-

sure of market volatility VIX naturally in equilibrium is a function of those higher-order state variables,

none of which, however, could be priced under CRRA preferences, implying assets only having VIX

exposure would simply be priced according to the objective measure, further implying zero premia on

them. In light of its above features, we expect our framework is valuable in various future equilibrium

derivatives pricing research.

Our third contribution is the specific equilibrium VIX model, which, to our best knowledge, is the

first structural, consumption-based attempt at VIX option pricing in the literature. It is comprised

of a theoretical part and an empirical part. Since the economic mechanism has already been detailed

in the second paragraph, we briefly descibe the model’s empirical fit. Our calibrated model seeks to

match moments from a number of observed macro quantities, starting with the first two moments of

aggregate consumption growth, interest rates, and stock returns. Our model matches the consumption

growth and interest rate data up to negligible differences, matches equity market volatility, as well as

risk premia associated with VIX derivatives data, and generates an equity premium and a variance risk

premium that are pretty close to those seen in the data.

As a comparison, previous consumption-based models such as Bansal and Yaron (2004) and Wachter

(2013) are mostly unable to correctly address VIX derivatives premia. The rare disaster mechanism in

Wachter (2013) implies an unrealistically large VIX and variance premium. Bansal and Yaron (2004)

do have a time-varying volatility process, but it suffers the problem that the process is too persistent to

account for the observed sharply downward-sloping term structures in VIX derivative premia and implied

volatilities. Moreover, a persistent long-run expected consumption growth is completely unnecessary

for explaining VIX derivatives data.1

1VIX in equilibrium is a function in only higher-order moments of consumption. In long-run risk type models, equilir-
bium VIX doesn’t depend on xt at all.
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In a single factor volatility model, say Heston’s (1993) model, squared VIX is proportional to spot

variance, and thus inherits its statistical properties. Since a square root process has local variance that

is proportional to its level, the Heston model will produce an implied VIX volatility that is perfectly

correlated with VIX itself. In the data, however, the contemporaneous correlation between VIX and

implied (Black ’76 or Black-Scholes) volatility of VIX options is only about 0.5. Our two factor (σ2
t

and λt) model replicates this positive but imperfect correlation. The model also matches higher order

moments of VIX option return distributions, including variance, skewness and kurtosis. It matches

implied VIX volatility in a number of dimensions: the average ATM implied VIX volatility (i.e., VVIX)

is almost matched identically. The average implied volatility surface, meaning implied VIX volatility

as a function of maturity and strike, is similar to what we observe: it is vastly skewed to the right (as

would be consistent with a right-skewed underlying VIX distribution), and it has a sharply downward

sloping term structure similar to what we observe in the data. Another phenomenon we document

is that during normal times, VIX implied volatilities are concave over (most) strikes but during high

VIX (financial crisis) regimes, the implied volatility is convex. Surprisingly, our model reproduces this

change from concavity to convexity.

The rest of the paper is organized as follows. Section 2 and 3 respectively describes our sample of

VIX options and presents reduced-form evidence. Section 4 presents our general theory, while 5 presents

the specifics as it applies to our joint consumption/returns/VIX options model - the equilibrium VIX

model. Section 6 presents results from our model calibration exercise and Section 7 summarizes our

findings.

2 Data

The sample was collected from the CBOE2 and consists of data sampled at the one-minute interval over

the period 2005 until the end of 2018. The data set consists of best bids, best asks, bid/ask quantities,

and open high/low in addition to contact characteristics over the one-minute intervals. The fact that the

data are time-stamped down to the minute interval mitigates the problem of non-synchronous quotes

that are often problematic in end-of-day data.

VIX options and futures are cash-settled to a special VIX computation known as the VRO. The

VRO is computed from prices of constituent SPX options that are compiled through a special auction

that is held pre-market on the VIX expiration day, typically the third or fourth Wednesday of the

month. This contrasts the VIX itself, which is computed from midpoints. While in theory VRO should

2See https://datashop.cboe.com for details.
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differ little from the open value of the VIX on the settlement day, in practice it may. Griffin and Shams

(2018) present evidence suggesting that, since far OTM SPX options can be traded very cheaply and

have a comparably large impact on the computation of the SOQ, the market is prone to manipulation.

Some remarks regarding the relationship between VIX futures and options are in order. VIX futures

market prices have no direct effect on VIX options - both are settled to VRO. However, the fact that

the underlying VIX index is not a marketable asset has implications for both futures prices and options.

The most important impact on the prices of futures contracts is they do not adhere to a standard

futures-spot no-arbitage parity condition. For example, for a stock index value St, a τ period futures

price Ft(τ) will satisfy

Ft(τ) = Ste
(r−q)(T−t) (1)

where r and q are the continuously compounding risk free rate and dividend yield, respectively. This

implies that Ft(τ) and St do not deviate by a substantial amount.

For VIX futures with long maturities however, the deviation between spot VIX and VIX futures

prices can be very large. Mechanically, this happens because there is no way to arbitrage the devations.

Fundamentally, futures prices should incorporate market participants’ expectations of mean reversion in

VIX. Prices can also reflect a risk premium. Whaley (2013) and Eraker and Wu (2017) present evidence

suggesting that expected returns on VIX futures are substantially negative.

VIX options do not satisfy Put-Call parity with respect to the underlying VIX index. They do

however satisfy a version of Put-Call parity that includes the same-maturity futures, namely

Ct = Pt + (Ft −K)e−r(T−t) (2)

where Ct and Pt are respectively prices of calls and puts with strike K and T maturity and Ft a T

maturity futures price. Keeping in mind that mean reversion will imply that Ft is below spot VIX when

spot VIX is high (and vice versa), an ATM option (K = Ft) will have a strike that is below spot VIX

when spot VIX is high, and above spot VIX when spot VIX is low. The fact that the VIX itself is not

a Martingale, but futures are, suggests that we should apply Black (1976)’s pricing formula for options

on futures rather than Black-Scholes in this context, particularly, in computing implied volatilities of

VIX options.
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3 Exploratory Data Analysis

3.1 Option Implied Volatilities

To characterize the pricing of VIX options we first study Implied Volatilities. Figure 1 plot implied

volatility for VIX options on two different days. On December 12, 2008, the VIX was high at 65.48 and

on March 26, 2017 the VIX was low at 10.78. These days are typical of what we observe in high and

low VIX states in our sample.

[Figure 1 about here.]

There are a number of features of the data that are worth commenting on.

First, in both cases, for a given strike, the implied volatility is greater for short-maturity options.

That is, the term structure of implied volatility is downward sloping irrespective of the level of VIX.

To understand why this happens, it is important to remember that Implied Volatility, in this case

computed from the Black ’76 model for pricing options on futures, assumes that the underlying is a

random walk. If a time-series follows a random walk, its forecasted variance increases linearly with the

forecast horizon. The downward-sloping term structure we observe in VIX options implied volatility,

therefore, is evidence that the market does not think that VIX variance increases proportionally with

the forecast horizon. Rather, it suggests that the market knows and understands that the VIX is not a

Martingale.

Second, the shapes of the implied volatility functions are mildly concave in the high-VIX/short-

maturity case, seen in the red six-day maturity case in the top graph. In the low VIX case, the implied

volatility functions are uniformly forming a concave “frown” rather than the usual convex “smile” seen

in most equity data, including the SPX.

Third, and perhaps most surprising, if we compare maturities in the 70-90 day range with relatively

high strikes (say 40), we see that they were in some sense more expensive in the 2017 low volatility

state than they were in the 2008 high volatility state. For example, both 69 and 97-day maturities in

the 40-50 strike range were trading at implied volatilities below 100% in November of 2008, but 83-day

maturity 40-50 strike range options traded at above 100% implied volatilities in 2017.

[Table 1 about here.]
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Table 1 shows the average VIX implied volatility surface over strike and maturity. As seen, the

two predominant patterns discussed above are visually evident: the term-structure is sharply downward

sloping and the volatility surface is increasing and concave in the strike levels.

[Figure 2 about here.]

Figure 2 shows the relationship between VIX level, as measured by one-month futures prices, and

ATM VIX option implied Black volatility. The color coding shows data by year. As seen in the plot,

there is generally a positive relationship and the unconditional correlation is 0.48. The strength of the

relation between the futures level and the implied VIX volatility is however time-varying. By running

a regression year-by-year we find that the slope coefficients vary from a low of 0.01 in 2009 to 0.1 in

2014. This is not to be interpreted as a causal relation: we do not believe that vol-of-vol, as measured

by ATM VIX volatility, is varying deterministically over the calendar. Rather, the evidence suggests

that vol-of-vol, and thereby VIX ATM implied, is related to some persistent factor that is imperfectly

correlated with volatility itself. In our structural model, therefore, we specify a structure in which

aggregate consumption growth volatility (σt) is driven by exogenous shocks with two components. The

first is a regular CIR-style diffusion term. Second, aggregate volatility is also discontinuous, with jump

in it arriving at a rate (λt) which follows an independent self-exciting diffusion process. In equilibrium,

both VIX and vol-of-vol are non-linear functions of σt and λt. This modeling specification allows us

to match the positive, yet imperfect, time-varying correlation between vol-level and vol-of-vol seen in

Figure 2.

[Table 2 about here.]

3.2 Option Returns

Much like traditional asset pricing research, recent developments in option research emphasize risk

premia associated with factors-shocks. Coval and Shumway (2001) show that average returns to SPX

options are statistically significantly negative. Their paper shows that even delta-neutral straddles that

are immune to tail-risk experience large negative returns. Bondarenko (2003) reports Sharpe ratios of

-0.38 and -3.93 for 4% and 6% OTM SPX puts, respectively, while Eraker (2012) find Sharpe ratios

of about -1/2 for ATM straddles. It is well known that implied volatility exceeds realized volatility

by some considerable amount (i.e, Jackwerth and Rubenstein (1996), Bollerslev, Tauchen, and Zhou

(2009) among others), which is interpreted as a volatility risk premium. Whaley (2013), Eraker and Wu
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(2017), and Dew-Becker, Giglio, Le, and Rodriguez (2017) show that VIX futures and variance swaps

yield large negative average rates of return.

Table 2 presents summary statistics on returns to VIX options positions using data from 2006 until

the end of 2018. The average returns are buy-and-hold returns over the maturity of the option. For

example, an ATM one-month call had an average one-month return of -0.26 (-26%) in our sample. Like-

wise, an ATM call with six-month maturity had an average six-month return of -.23 (-23%). Reconciling

these two numbers is actually not trivial. First off, the one-month -26% return is in fact reasonably

consistent with evidence from the VIX futures and variance swap market cited above: maintaining a

positive volatility exposure is very costly when using short-maturity derivative instruments. Compa-

rably, long-maturity calls appear to have been quite cheap, as the average return is “only” -23%, thus

seemingly allowing a trader to keep a long position in a longer-maturity call and then sell it a month

before expiration with minimal loss. It also suggests that a long-short position with the short leg con-

sisting of short-maturity options and the long of long maturities could be profitable. One immediate

caveat to note here is that the expected rates of return are difficult to estimate. In fact, it is difficult

to conclude that even the average return rates are statistically significantly different from zero: with

the exception of ITM short maturities, the confidence intervals for mean call returns overlap with zero

which is to say - we cannot reject the null that the average rate of return on these contracts is different

from zero. The reason for this is the large standard deviation of the returns which is determined by the

non-linearity of the option payoffs along with the very high volatility of the underlying VIX index.

Put options generally have statistically significantly positive rates of return. Since put options give

negative volatility exposure, we should expect puts to generate a positive risk premium, and they do:

Table 2 shows that puts on average have positive rates of return, and in the case of the long maturity

contracts, statistically significantly so. Overall, negative volatility risk premium evidenced in the average

positive put returns and Sharpe ratios is consistent with aformentioned empirical evidence from VIX

futures, VIX futures ETNs and underlying SPX options.

[Figure 3 about here.]

In order to illustrate further the properties of payoffs to VIX options, Figure 3 depicts the marked-

to-market value of short maturity ATM options. The graphs depict the value of a trading strategy that

invests in one-month maturity VIX calls and puts, respectively, and hold those options until maturity.

We plot the market value of trades initiated at the bids and asks respectively, as to illustrate the

performance of an investor who trades by crossing the market or uses market orders. As seen, call

options systematically lose while put options on average yield positive rates of return. Noteworthy is
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the difference in value based on whether the trades are initiated at the bid or the ask, signifying the

large bid ask spreads in VIX options. Indeed, someone who were cross the market to buy puts at posted

asking prices would almost be back to breakeven after eleven years of trading.

The figure also illustrates how the difference in return characteristics is manifested: since VIX itself

has a very right-skewed return distribution, calls occasionally generate large positive returns reminiscent

of crash-insurance. The returns on put options are bounded from below by -100%, and also do not

experience large value increases similar to what we see for calls because VIX tends to decrease at a

much slower speed than it increases. In our model we model the asymmetric volatility shocks by a

mixture of a self-exciting volatility jump process and a CIR style diffusion.

It is finally worth noting that the largest asymmetric increase in the value of the VIX calls did not

happen in the Fall of 2008, but rather on February 5th, 2018, a day otherwise not associated with a

negative macro event. On this day the SPX fell 4.6%, but it was the move in volatility derivatives that

captured financial press headlines. Notably, while VIX itself increased dramatically, VIX futures, which

normally would increase by a fraction of about 1
2 of VIX, itself increased dramatically around the close

of the market. The sharp increase was accelerated by the need for both 2x levered and short VIX futures

ETFs and ETNs to purchase VIX futures at the close3. The short VIX ETN ”XIV” was terminated with

a 96% loss while the SVXY - a short VIX ETF lost about 91% and changed its investment objective to

-1
2 of its capital.

4 A General Model

In this section, we present a general equilibrium asset pricing model featuring recursive preferences

for a representative agent in an economy with affine jumping-diffusive states. Exact solutions are

characterized for the value function, risk-free rate, the state-price density, and its induced risk-neutral

measure. Those results can be conveniently applied to solve our specific stochastic volatility and time-

varying volatility jump risk model for VIX option pricing in the next section.

3While it seems counterintuitive that both levered long and short ETPs need to purchase futures in the case of an
increase in futures values, they do: short funds need to buy-to-cover to maintain a target portfolio of -100% of their capital
while long levered funds too need to purchase because their objective is to maintain a (in this case 2:1) leverage.
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4.1 Preferences

Consider a continuous-time formulation of the economy where the representative agent’s preferences

over the uncertain consumption stream Ct can be described by a recursive utility function developed in

Duffie and Epstein (1992). For tractability purpose, we assume a limiting case of their model that sets

the intertemporal elasticity of substitution (IES) equal to one:

Vt = Et

∫ ∞
t

f(Cs, Vs)ds (3)

f(C, V ) = β(1− γ)V (lnC − 1

1− γ
ln((1− γ)V )), (4)

where Vt represents the continuation value. The parameter β is the rate of time preference, and γ is

the relative risk aversion. The logarithm form in (4) indicates that we have set IES equal to one. It is

well known that (4) is equivalent to the ψ → 1 limiting case of the more general formulation:

f(C, V ) =
β

1− 1
ψ

C
1− 1

ψ − ((1− γ)V )
1
θ

((1− γ)V )
1
θ
−1

, (5)

where θ = (1−γ)/(1− 1
ψ ). The novel and appealing characteristic of the generalized preferences described

in (5) is that they break the tight link between intratemporal risk-aversion (γ) and intertemporal

substitutability (ψ) and allow to capture the agent’s preference for the timing of the resolution of

uncertainty. For example, risk aversion is usually assumed larger than the reciprocal of the IES, γ > 1/ψ,

in which case the agent prefers early resolution of uncertainty. As we will show, this ensures that the

compensations for various risks in the economy are of the right sign and quantitatively important. Note

that although the preferences in (5) collapse into the familiar power utility with γ = 1
ψ , in which case

only risks to current consumption are priced, setting ψ = 1 together with γ > 1 (i.e., (4)) still totally

retains us the desired property of the recursive preferences. From an empirical perspective, the relative

size of the IES and one is also a source of debate. A number of studies conclude that reasonable values

for this parameter lie in a range close to one, or slightly lower than one (Vissing-Jørgensen (2002);

Thimme (2017)), while the long-run risks literature (Bansal and Yaron (2004)) often relies on an IES

greater than one.

4.2 State Variables

We follow Duffie, Pan, and Singleton (2000) and Eraker and Shaliastovich (2008) and assume that there

is a set of n state variables in the economy which follow an affine diffusion-jump process. Obviously, for
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any an endowment-economy model to make sense, (log) consumption is always one state variable. The

other state variables are very broadly defined. For example, one needs to include as a state variable the

intensity of the jumps to consumption in a time-varying disaster risk framework (Wachter (2013)), and

the price level or the expected inflation when pricing a nominal bond (Bansal and Shaliastovich (2013)).

Specifically, we fix the probability space {Ω,F ,P} and the information filtration Ft, and suppose that

Xt is a Markov process in some state space D ⊆ Rn with a stochastic differential equation representation

dXt = µ(Xt)dt+ Σ(Xt)dBt + ξt · dNt, (6)

where Bt is an Ft adapted standard Brownian motion in Rn. The term ξt · dNt (element-by-element

multiplication) captures n mutually conditionally independent jumps arriving with intensities respec-

tively equal to the n elements of the vector l(Xt) and jump sizes respectively equal to the n elements

of the random vector ξt defined on D.4 Formally, each ith element of Nt is a Poisson process with

time-varying intensity equal to the ith element of l(Xt). We further assume that jump sizes ξ are i.i.d.

over time but not necessarily in cross-section. Their distributions are together specified through the

vector moment generating function % : Cn → Cn (also called the ”jump transform”)

%(u) = E[euξ]. (7)

We assume that all the n moment-generating functions exist such that each %i(·) is well defined for

both complex and real arguments on some region of the complex plane. We further impose an affine

structure on the drift, diffusion and intensity functions

µ(Xt) =M+KXt (8)

Σ(Xt)Σ(Xt)
′ = h+

∑
i

HiXt,i (9)

l(Xt) = l + LXt, (10)

for (M,K) ∈ Rn × Rn×n, (h,H) ∈ Rn×n × Rn×n×n, (l, L) ∈ Rn × Rn×n. For X to be well defined,

there are additional joint restrictions on the parameters of the model, which are addressed in Duffie

and Kan (1996). To facilitate above matrix manipulations, note that H = [H1, H2, ...,Hn] and Xt =

(Xt,1, Xt,2, ..., Xt,n)′.

4Subsequently, a ”·” always represents an element-by-element multiplication; a ”·/” represents an element-by-element
division.
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We assume an endowment economy and that the log consumption supply is always the first state

variable of the economy. With a selection vector δc = (1, 0, 0, ..., 0)′, this means

lnCt = δ′cXt. (11)

We also assume that the market is complete5 and, particularly, the risk-free rate exists.

4.3 Value Function and Risk-Free Rate

Let W denote the wealth of the representative agent and J(W,X) the value function. Because Xt is a

Markov process and nothing depends on t explicitly in the specifications of both preferences and state

variable dynamics, we conjecture that J is not explicitly t-dependent. Conjecture that the equilibrium

price-dividend ratio for the consumption claim (i.e., a perpetual claim that exactly delivers the aggregate

consumption as its dividend each period) is constant. In particular, let St denote the price of the

consumption claim. Then
St
Ct

= A (12)

for some constant A.6 (11), (12) and a vector version of Ito’s Lemma for jump-diffusion processes

together imply

dSt
St−

=
(
δ′cµ(Xt) +

1

2
δ′cΣ(Xt)Σ(Xt)

′δc
)
dt+ δ′cΣ(Xt)dBt + δ′c

[
(eξ − 1) · dNt

]
, (13)

where eξ is an n × 1 vector which ith element is eξi and 1 is an n × 1 vector of ones. Recall that the

instantaneous net return on the consumption claim is

dSt + Ct−dt

St−
=
dSt
St−

+
1

A
dt. (14)

Let rt denote the instantaneous net risk-free rate. To solve for the value function, consider the Hamilton-

Jacobi-Bellman equation for an investor who allocates wealth Wt between St and the risk-free asset.

5For our purposes of VIX option pricing, and, particularly, VIX option implied volatility computation, in our specific
model of Section 5 we will assume the VIX index itself is not directly tradable, as in reality. All other markets, however,
are complete.

6Indeed, as pointed out in Wachter (2013), the fact that St/Ct is constant (and equal to 1/β actually, which we will
verify) arises directly from the assumption of unit IES, and is independent of the details of the model. See, e.g., Weil
(1990)
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Let αt be the fraction of wealth invested in the (risky) consumption claim St, and (with some abuse of

notation) let Ct be the agent’s consumption choice. Wealth then follows the process

dWt =
[
Wt−αt(δ

′
cµ(Xt) +

1

2
δ′cΣ(Xt)Σ(Xt)

′δc +
1

A
− rt) +Wt−rt − Ct−

]
dt

+Wt−αtδ
′
cΣ(Xt)dBt +Wt−αtδ

′
c

[
(eξ − 1) · dNt

]
. (15)

Optimal consumption and portfolio choice must satisfy the following Hamilton-Jacobi-Bellman equation

sup
αt,Ct

{
JW
(
Wtαt

(
δ′cµ(Xt) +

1

2
δ′cΣ(Xt)Σ(Xt)

′δc +
1

A
− rt

)
+Wtrt − Ct

)
+ J ′Xµ(Xt)

+
1

2
tr

(JXX JXW

J ′XW JWW

 Σ(Xt)Σ(Xt)
′ WtαtΣ(Xt)Σ(Xt)

′δc

Wtαtδ
′
cΣ(Xt)Σ(Xt)

′ W 2
t α

2
t δ
′
cΣ(Xt)Σ(Xt)

′δc

)

+Eξ1
[
J(Wt +Wtαt

(
eξ1 − 1

)
, Xt,1 + ξ1, Xt,−1)

]
l1(Xt)

+

n∑
i=2

Eξi
[
J(Wt, Xt,i + ξi, Xt,−i)

]
li(Xt)− J(Wt, Xt)1

′l(Xt) + f(Ct, J(Wt, Xt))

}
= 0, (16)

where Ji denotes the first derivative of J with respect to i, for i equal to W or X, and Jij the second

derivative of J with respect to first i and then j. The dimensions of all resulting matrices are well

understood. For example, JX is an n× 1 vector. The operator tr() represents the trace of the operated

matrix. Note that the instantaneous expected change in the value function is given by the continuous

drift plus the expected change due to jumps to state variables. The effects of jumps are not symmetric:

jump to consumption affects J through both W and X, whereas jumps to other state variables affect J

only through X. In Appendix A, we show that the form of the utility function and the envelop condition

fC = JW imply that the wealth-consumption ratio A = β−1. Moreover, the value function takes the

form

J(W,X) =
W 1−γ

1− γ
I(X). (17)

The function I(X) is given by

I(X) = ea+b′X , (18)

where a is given by

a =
1

β

{(
(1− γ)δc + b

)′M+
1

2

(
(1− γ)δc + b

)′
h
(
(1− γ)δc + b

)
+
((
%1(1− γ + b1)− %1(b1)

)
δ′c + %(b)′ − 1′

)
l + (1− γ)βln(β)

}
(19)
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and b solves the n-equation system

1

2
b′Hb+

(
K′ + (1− γ)δ′cH − diag(β)

)
b+ L′%(b)

+
(
%1(1− γ + b1)− %1(b1)

)
L′δc +

(1− γ)2

2
δ′cHδc + (1− γ)K′δc − L′1 = 0. (20)

Here (20) is a system of n equations for n unknowns (b1, b2, ..., bn). It depends on the specification of

%(·) and generally has no closed-form solution. The system is quadratic and can be readily solved with a

low dimension of n in several special cases, for example, when there are no jumps with state-dependent

intensities, or when there is jump only in consumption while the jump intensity doesn’t depend on

consumption itself, and so forth. In many other cases, including our VIX model considered in the next

section, even if the system is not entirely quadratic the equation for some bi is quadratic so that bi can

be easily solved out which then can be treated as a constant in equations for remaining bis and helps

reduce those remaining equations into a quadratic system.

Because in most settings γ > 1, the state variable Xi with a positive (negative) associated coefficient

bi would be negatively (positively) correlated with the value function, i.e., negatively priced. As will be

shown in the next subsection, the equilibrium prices of risks to Xt can be summarized by the following

n× 1 vector

λ = γδc − b. (21)

Intuitively, except for log consumption, any state variable positively (negatively) correlated with the

value function naturally commands a positive (negative) market price of risk. Because the log consump-

tion affects the value function additionally through W , its market price of risk has an extra term γ. Now

if γ = 1 ≡ 1/ψ, the Duffie-Epstein preferences collapse into the familiar CRRA preferences, and thus,

as one can easily verify, (20) admits b = (0, 0, ..., 0)′ as a solution and from (21) λ = (γ, 0, 0, ..., 0), which

means only innovations to consumption will be priced. Therefore, while consumption is the only priced

factor in CRRA utility models, Duffie-Epstein preferences imply that all state variables are potentially

priced.7

Appendix A also shows that the instantaneous risk-free rate is given by

rt = β + δ′cµ(Xt) + (
1

2
− γ)δ′cΣ(Xt)Σ(Xt)

′δc + δ′c
[(
%(b+ 1− γ)− %(b− γ)

)
· l(Xt)

]
︸ ︷︷ ︸

CRRA Preferences

+ δ′cΣ(Xt)Σ(Xt)
′b︸ ︷︷ ︸

Duffie-Epstein Preferences

.
(22)

7Of course for any state variable to be priced, it ultimately has to influence consumption in some systematic way.
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The terms above the first bracket in (22) is what would still arise even if we had assumed CRRA

preferences for the representative agent. β represents the role of discounting, δ′cµ(Xt) intertemporal

smoothing, and (1
2 − γ)δ′cΣ(Xt)Σ(Xt)

′δc
8 precautionary savings due to diffusion risks in consumption.

δ′c
[(
%(b + 1 − γ) − %(b − γ)

)
· l(Xt)

]
represents the representative agent’s response to jump risks in

consumption. Suppose the jump size for consumption is always negative, %′1(·) < 0, then %1(b+ 1−γ)−

%1(b − γ) is negative regardless of b. Intuitively, an increase in the probability of a downward jump in

consumption, l1(Xt), increases the representative agent’s desire to save, and thus lowers the risk-free rate.

The term above the second bracket in (22) represents the representative agent’s saving motive response

to risks in the economy that would only arise under Duffie-Epstein preferences. δ′cΣ(Xt)Σ(Xt) captures

the comovement between the diffusion in consumption and that in each state variable, while b determines

the sign of the influence of each state variable on marginal utility of consumption. Multiplication of

them, if positive (negative), summarizes an additional feature the representative agent likes (dislikes)

about the diffusion risks in the economy. To better understand this point, think about volatility as the

second state variable. Assume that the comovement between consumption and volatility is negative,

i.e., (δ′cΣ(Xt)Σ(Xt)
′)2 < 0, and that volatility positively (negatively) affects marginal utility (utility),

i.e., b2 > 0. Multiplying them together would yield a negative push on the risk-free rate. Intuitively,

because the times at which consumption is low are also times at which volatility and thus marginal

utility is high, the representative agent dislikes and wants to avoid being impacted by this source of

diffusion risk. He will thus have another precautionary saving motive, which pushes down the risk-free

rate.

4.4 State-Price Density

Calculation of prices and rates of returns in the economy is simplified considerably by making use of the

state-price density and the induced risk-neutral measure, which reflect the equilibrium compensation

investors require for bearing various risks in the economy. Unlike time-additive preferences, recursive

preferences imply that the state-price density depends explicitly on the value function. In particular,

Duffie and Skiadas (1994) show that the state-price density associated with the preferences in (3) and

(4) is equal to

πt = exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt), (23)

8Here, 1
2

aries from applying Ito’s Lemma because we are working with log consumption, which is quantitatively not
important.
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where fC and fV denote the derivatives of f with respect to the first and second argument, respectively.

In Appendix A, we show that πt can be expressed in equilibrium as

πt = βγ exp
{
ηt− βb′

∫ t

0
Xsds+ a+ (b′ − γδ′c)Xt

}
, (24)

where η = β(1− γ)lnβ − βa− β. Applying Ito’s Lemma on (24) then implies

dπt
πt−

= µπ,tdt+ (b′ − γδ′c)Σ(Xt)dBt +
(
e(b−γδc)·ξ − 1

)
dNt, (25)

where

µπ,t = η − βb′Xt + (b′ − γδ′c)µ(Xt) +
1

2
(b′ − γδ′c)Σ(Xt)Σ(Xt)

′(b− γδc). (26)

Alternatively, given the form of the risk-free rate in (22), we can solve for µπ,t following a familiar

no-arbitrage argument. As no-arbitrage implies that πte
∫ t
0 rsds is a martingale, Et[d(πte

∫ t
0 rsds)] must be

zero. Using Ito’s Lemma, we can obtain

µπ,t = −rt −
(
%(b− γδc)− 1

)′
l(Xt). (27)

Making use of (19), (20) and (22), one can verify that (27) is equivalent to (26). We now define

Λt = Σ(Xt)
′λ, (28)

where, recall (21), λ = γδc − b determines the market prices of risks in the different components of Xt

such that if λi = 0 then innovations to Xt,i are not priced. λi is related, through %i(·), to the price of

jump risk with jump size ξi in the ith state variable. Λt,i is literally the total price of the Brownian

motion risks associated with Xt,i.

In Appendix B we rigorously prove a convergence result: the equilibrium state-price density in (24)

is actually an IES → 1 limit of the more general state-price density approximately solved in Eraker

and Shaliastovich (2008), thanks to the similarity between the state variable dynamics used in the

two papers. Equivalently, the error in the log-linear approximation in that paper vanishes as the IES

approaches one.

4.5 Risk-Neutral Measure

Although with the state-price density at hand we can already start to price assets with any state-variable-

dependent payoffs, it is sometimes more convenient, or even necessary, to work with the evolution of
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the state variables under the risk-neutral measure induced by the state-price density πt. The following

theorem is a generalization of Proposition 5 in Duffie, Pan, and Singleton (2000).

Theorem 1. Under the risk-neutral measure Q induced by the state-price density πt the state variables

follow

dXt = (MQ +KQXt)dt+ Σ(Xt)dB
Q
t + ξQt · dN

Q
t , (29)

where

MQ =M− hλ (30)

KQ = K −Hλ (31)

dBQ
t = dBt + Λtdt (32)

defines a Brownian motion under the risk-neutral measure.

The Q jump-arrival intensities are given by

lQ(Xt) = l(Xt) · %(−λ). (33)

The Q jump-size densities are characterized by the vector moment generating function %Q : Cn → Cn

%Q(u) = EQ[euξ] = %(u− λ)./%(−λ), (34)

where element-by-element multiplication and division are respectively performed in (33) and (34).

Notice that if λi = 0, then there is no difference in the P vs. Q jump measures and market prices of

both diffusion and jump risks associated with Xi are zero. This is another intuitive demonstration of

why λ summarizes the market prices of risks associated with the diffusions and jumps in the economy.

The jump intensity is greater (smaller) under the equivalent measure Q whenever λ is negative (pos-

itive). Usually, we cannot say much about the relationship between the jump size under the equivalent

measure Q and that under the objective measure P , except for a special case in which the jump sizes

are exponentially distributed. Suppose ξ is exponentially distributed with mean denoted by EP (ξ).

Intuitively, one can construct the following reward-to-risk ratio vector, which, though a bit too simple,

can be an illustration of the equilibrium compensations for jump size risks

ΛJump ≡
(
EP (ξ)− EQ(ξ)

)
./StdP (ξ) = 1− %(−λ). (35)
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It’s easy to see ΛJumpi and λi have the same sign, implying that the mean of ξ is adjusted upward

(downward) under Q measure for negatively (positively) priced state variables. However, it is somewhat

misleading, although tempting, to coin this measure a market price of jump risk. Jump risks are

characterized, and thus priced, not only according to their means and standard deviations, but also

higher moments.

5 A Structural Approach to VIX Option Pricing

In this section, we present our model framework for pricing VIX options, which is a special case of the

general affine pricing framework developed in the previous section. A simple affine state dynamics is

first employed to price VIX in explicit form in the general equilibrium of the economy and a generalized

Fourier payoff transform analysis is then performed to derive a pricing formula for VIX options as a

single integral.

5.1 The Model

Consider an endowment economy where there exists a representative agent who has recursive preferences

as described in (3) and (4), and consumption, dividends and in the end asset prices and returns, are

influenced by a key variable, which is the conditional volatility of consumption growth, σt, which itself

is exposed to potential diffusion and jump risks. Specifically, we assume the following affine structure

for the evolutions of the state variables

d lnCt = (µ− σ2
t

2
)dt+ σtdB

C
t (36)

dσ2
t = κV (θV − σ2

t )dt+ σV σtdB
V
t + ξV dNt (37)

dλt = κλ(θλ − λt)dt+ σλ
√
λtdB

λ
t . (38)

Here lnCt is the log consumption supply. σ2
t is the instantaneous conditional variance of consumption

growth, which is driven by the continuous Brownian shock dBV
t as well as the discontinuous shock

ξV dNt. Here Nt is a compounded Poission process which instantaneous arrival intensity is λt which

itself follows a mean-reverting diffusion process. ξV is a time-invariantly distributed random variable

representing the jump size with a moment generating function %(·). In line with Eraker and Shaliastovich

(2008) we assume ξV > 0, implying only upward jumps in volatility are possible. Here all three standard

Brownian motions BC
t , BV

t and Bλ
t and the jump size ξV are mutually independent. Our specification of
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the consumption process abstracts from the important mechanisms in leading asset pricing models such

as the long-run productivity risks and the rare disasters occurred to consumption. Instead, we focus on

potential jumps to consumption growth volatility, which specification is natural given our concentration

on pricing VIX and VIX derivatives. In a nutshell, we are pursuing the simplest framework that,

nevertheless, allows capturing as many aspects of VIX derivatives data as possible.

As Cox, Ingersoll, and Ross (1985) discuss, the solution to (38) has a stationary distribution provided

that κλ > 0 and θλ > 0. This stationary distribution is Gamma with shape parameter 2κλθλ/σ2
λ and

scale parameter σ2
λ/(2κ

λ). If 2κλθλ > σ2
λ, the Feller condition (from Feller (1951)) is satisfied, implying

a finite density at zero. The stationary distribution of λt is highly right-skewed, arising from the square

root term multiplying the Brownian shock in (38): the square root term implies that high realizations

of λt make the process more volatile, and thus further high realizations more likely than they would

be under a standard AR process. The model therefore implies that there are times when jumps to

volatility can occur with high probability (akin to financial crisis times), but these times are themselves

very rare. For similar reasons, there is a σt term multiplying the Brownian shock in (37), helping both

prevent σ2
t from falling below zero and correctly replicate the right-skewness in its distribution.

5.2 State-Price Density

Applying the results derived for the general framework, Appendix C shows that the value function of

the representative agent in this model is given by

J(Wt, Xt) =
W 1−γ
t

1− γ
exp

(
a+ b2σ

2
t + b3λt

)
(39)

where

a =
1

β

(
(1− γ)(µ+ β lnβ) + b2κ

V θV + b3κ
λθλ
)

(40)

b2 =
(κV + β)

σ2
V

−

√
(κV + β)2 − σ2

V γ(γ − 1)

σ2
V

(41)

b3 =
κλ + β

σ2
λ

−

√
(κλ + β)2 − 2σ2

λ(%(b2)− 1)

σ2
λ

. (42)

Assume parameter values are such that b2 and b3 are both well defined. When this is the case, note

that (41) implies b2 > 0 if we assume γ > 1. (42) then implies b3 > 0 since by definition %(b2) − 1 =

E[eb2ξV − 1] > 0 which is due to the positivities of both b2 and ξV . Hence from (39) the value function

(marginal utility) is decreasing (increasing) in both σ2
t and λt. This means an increase in consumption
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growth volatility reduces utility (increases marginal utility) for the representative agent. Similarly, an

increase in the probability of a volatility jump also reduces utility (increases marginal utility) for the

representative agent. Both results are intuitive. Because under recursive preferences the marginal utility

depends on, besides consumption, the value function, which is explicitly affected by σ2
t and λt, the agent

requires compensation for bearing the risks in both σ2
t and λt.

The instantaneous risk-free rate is given by

rt = β + µ− γσ2
t , (43)

where β represents the role of discounting, µ intertemporal smoothing and γσ2
t precautionary savings.

Appendix C also shows that the state-price density is given by

πt
πt−

= −rtdt− Λ′tdBt +
(
eb2ξV − 1

)
dNt − λtE[eb2ξV − 1]dt (44)

Λt = Σ(Xt)
′λ (45)

λ = (γ,−b2,−b3)′. (46)

Remember that the vector λ determines the market prices of risks in the different components of Xt such

that innovations to Xt,i are positively (negatively/not) priced if and only if λi > 0 (< 0/ = 0). Therefore,

in the present model log consumption lnCt has a positive market price of risk while consumption growth

volatility σ2
t and volatility jump intensity λt each warrants a negative market price of risk. The fact

that innovations to all three state variables are priced is in sharp contrast with the CRRA utility model

in which only innovations to consumption are priced, and important for our model to generate non-zero

VIX derivative premia akin to those seen in the data.

Using the results in Theorem 1, one can show that the evolution of the state variables under the

risk-neutral measure Q induced by the state-price density is given by (also see Appendix C for other

risk-neutral parameters)

d lnCt =
(
µ− (

1

2
+ γ)σ2

t

)
dt+ σtdB

C,Q
t (47)

dσ2
t = κV,Q(θV,Q − σ2

t )dt+ σV σtdB
V,Q
t + ξQV · dN

Q
t (48)

dλt = κλ,Q(θλ,Q − λt)dt+ σλ
√
λtdB

λ,Q
t , (49)

where

κV,Q = κV − b2σ2
V ; κλ,Q = κλ − b3σ2

λ (50)
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θV,Q =
κV

κV − b2σ2
V

θV ; θλ,Q =
κλ

κλ − b3σ2
λ

θλ. (51)

From (47), the drift of consumption growth is adjusted downward by γσ2
t under Q measure. Equations

(48) through (51) show that for both σ2
t and λt processes the mean reversion becomes slower and the

long-run mean becomes higher under Q measure. Moreover, Appendix C shows that the jump-arrival

intensity is magnified under the Q measure by a percentage %(b2)− 1: λt under P versus %(b2)λt under

Q. And as analyzed previously the jump size may be adjusted upward or downward under the Q

measure, with a moment generating function %(u) under P versus %(u+ b2)/%(b2) under Q. But in the

special case that ξV is exponentially distributed, the jump size is adjusted upward in the sense that

its mean is increased under Q. Specifically, let ξV ∼ exp(µξ) under P , then Appendix C shows that

ξQV ∼ exp(
µξ

1−µξb2 ) under Q.

5.3 Equity Price

To price VIX derivatives, let’s first price VIX. We start with specifying an aggregate dividend process,

which is denoted Dt and modeled as leveraged consumption as in Abel (1999) and Campbell (2003),

multiplied by a positive idiosyncratic noise term. Specifically, assume Dt = Cφt e
σDB

D
t . Then

d lnDt = φd lnCt + σDdB
D
t , (52)

where BD
t is a standard Brownian motion independent of any other random variable in the model.

As a result, this type of risk would not be priced in equilibrium. That is, the state variable lnDt is

redundant, which point one can confirm by introducing a fourth state variable lnDt as specified above

in the present framework, solving the model all over again and verifying that b4 = 0, i.e., lnDt doesn’t

enter the agent’s value function after lnCt has. However, the presence of equity market idiosyncratic

risk does affect the level of VIX and give us another free parameter σD so as to better match data

moments in our later calibration.
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Let Xt = [lnCt, σ
2
t , λt]

′ and P (Xt, Dt) denote the price of the claim to all future aggregate divi-

dends. Then this price is just obtained by taking the expectation under the risk-neutral measure of all

discounted future dividends:

P (Xt, Dt) =

∫ ∞
0

EQt

(
e−

∫ t+τ
t ruduDt+τ

)
dτ

=

∫ ∞
0

EQt

(
e−

∫ t+τ
t rudueφ lnCt+τ eσDB

D
t+τ

)
dτ

= eσDB
D
t

∫ ∞
0

e
σ2D
2
τEQt

(
e−

∫ t+τ
t rudueφ lnCt+τ

)
dτ.

(53)

To compute the expectation in the integrand, we follow Duffie, Pan, and Singleton (2000) and compute

a discounted characteristic function of Xt under the risk-neutral measure:

%QX(u,Xt, τ) ≡ EQt
(
e−

∫ t+τ
t rudueu

′Xt+τ
)

(54)

defined for u ∈ Cn. Under appropriate technique conditions (See Duffie, Pan, and Singleton (2000)),

%QX is exponential affine in Xt:

%QX(u,Xt, τ) = eα(τ)+β(τ)′Xt , (55)

where α(τ) and β(τ) satisfy the following complex-valued ordinary differential equations

β̇(τ) = −Φ1 +KQ′β(τ) +
1

2
β(τ)′Hβ(τ) + LQ

′(
%Q(β(τ))− 1

)
(56)

α̇(τ) = −Φ0 +MQ′β(τ) +
1

2
β(τ)′hβ(τ) + lQ

′(
%Q(β(τ))− 1

)
, (57)

subject to boundary conditions β(0) = u, α(0) = 0. A closed-form solution to %QX(u,Xt, τ) is difficult, if

not impossible, to obtain, but solving for %QX(u,Xt, τ) for a specific u is straightforward. In the case of

the equity market, (53) implies we only need to solve for
(
α(τ), β(τ)

)
for u = (φ, 0, 0)′. It turns out, as

shown in Appendix C, that the solutions obey

β1(τ) = φ, ∀τ (58)

β2(τ) =
2(φ− 1)(γ − 1

2φ)
(
1− e−ηφτ

)
(ηφ + b2σ2

V − κV )
(
1− e−ηφτ

)
− 2ηφ

(59)

where

ηφ =

√
(b2σ2

V − κV )2 + 2(φ− 1)(γ − 1

2
φ)σ2

V (60)

β̇3(τ) =
1

2
σ2
λβ

2
3(τ) + (b3σ

2
λ − κλ)β3(τ) + %

(
β2(τ) + b2

)
− %(b2) (61)
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α̇(τ) = −β + µ(φ− 1) + κV θV β2(τ) + κλθλβ3(τ). (62)

While β1(τ) and β2(τ) have closed-form solutions given by (58) through (60), we need to solve for β3(τ)

and α(τ) numerically using (61), (62) and the boundary conditions. Given
(
α(τ), β(τ)

)
, (53), (54) and

(55) together then recover the price of the claim to future aggregate dividends:

P (Xt, Dt) = Dt

∫ ∞
0

e
σ2D
2
τ+α(τ)+β2(τ)σ2

t+β3(τ)λtdτ. (63)

For notational convenience, we define G(σ2
t , λt) ≡

∫∞
0 e

σ2D
2
τ+α(τ)+β2(τ)σ2

t+β3(τ)λtdτ . Then

P (Xt, Dt) = DtG(σ2
t , λt). (64)

5.4 Equity Premium

The instantaneous equity premium conditional on no jumps occurring in our economy, as shown in

Appendix C, is given by

µP,t +
Dt−

Pt−
− rt = γφσ2

t − b2
G1

G
σ2
V σ

2
t − b3

G2

G
σ2
λλt + λtE

[
eb2ξV

(
1− G(σ2

t + ξV , λt)

G(σ2
t , λt)

)]
= σ′P,tΛt + λtE

[
eb2ξV

(
1− G(σ2

t + ξV , λt)

G(σ2
t , λt)

)] (65)

where

σP,t =
[
φσt,

G1

G
σV σt,

G2

G
σλ
√
λt
]′

(66)

where G1 and G2 respectively denotes the derivative of G(·, ·) with respect to σ2
t and λt, both evaluated

at (σ2
t , λt). Four components arise in order. The first term, γφσ2

t , represents a standard CRRA risk

premium which arises from the compensation for the diffusion risk in consumption, dBC
t . The second

component, −b2G1
G σ

2
V σ

2
t , captures the compensation for the diffusion risk in volatility, dBV

t . Appendix

C shows that β2(τ) is negative for all τ as long as 1 < φ < 2γ which we actually will assume here

and in our calibration, which immediately implies G1 < 0 (i.e., the price-dividend ratio is decreasing

in σ2
t ). Thus the second component takes a positive value. The third component, −b3G2

G σ
2
λλt, which

has a similar interpretation as the second one, stands for the compensation for the diffusion risk in

volatility jump intensity, dBλ
t . Appendix C shows that given β2(τ) is negative β3(τ) is also negative

for all τ , which implies G2 < 0 (i.e., the price-dividend ratio is decreasing in λt) and thus the third

component also takes a positive value. The last term, differently, captures the compensation for the

jump risk in volatility, ξV dNt. It is positive noting b2 > 0, ξV > 0 and G1 < 0. Intuitively, at the
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times volatility jumps upward two things happen simultaneously: first, marginal utility jumps upward

by a percentage equal to eb2ξV ; second, the stock price jumps downward by a percentage equal to

1 − G(σ2
t+ξV ,λt)

G(σ2
t ,λt)

. Therefore, equity is a risky, rather than hedging, asset, and thus investors need get

compensated for the jump risks in holding it.

Note that (65) is the equity premium conditional on no jumps to volatility occurring. The instanta-

neous equity premium in population is given by (65) plus the expected percentage change of the equity

price if a jump to volatility occurs. That’s to say, the population equity premium in the economy is

given by µP,t+
Dt−
Pt−
−rt plus a negative term: λtE

[
G(σ2

t+ξV ,λt)

G(σ2
t ,λt)

−1
]
. Finally, we can write the analytical

expression for the population equity premium as

ret − rt = σ′P,tΛt + λtE
[(
eb2ξV − 1

)(
1− G(σ2

t + ξV , λt)

G(σ2
t , λt)

)]
. (67)

Note that the last term in (67) is still positive, implying that the positive compensation for jump risks

dominates the direct negative effect of jumps on equity return.

Proposition 2. In equilibrium, innovations to σ2
t and λt are both negatively priced; the price-dividend

ratio G(σ2
t , λt) is strictly decreasing in both σ2

t and λt. Therefore, all sources of risks (diffusion and

jump risks) in σ2
t and λt help contribute to a positive equity premium.

5.5 VIX

Let Bt = [BC
t , B

V
t , B

λ
t ]′ and BQ

t = [BC,Q
t , BV,Q

t , Bλ,Q
t ]′. Appendix C shows that the dynamics of the log

equity price under the risk-neutral measure Q is given by

d lnPt =
(
µlnP,t − σ′P,tΛt

)
dt+ σ′P,tdB

Q
t + σDdB

D
t + ln

[G(σ2
t + ξQV , λt)

G(σ2
t , λt)

]
dNQ

t , (68)

where µlnP,t denotes the drift term in d lnPt under P measure. Intuitively, the drift of the growth of

equity price is adjusted downward by σ′P,tΛt under Q relative to under P . Moreover, the jumps to

volatility also have a greater negative impact on equity price under Q than under P , because, first,

ξQV on average is greater than ξV , and second, the arrival intensity of jump is lQ = %(b2)λt under Q

compared with just lP = λt under P . Also note that there is no difference between BD
t and BD,Q

t since

this source of risk is not priced.
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Note that given the model parameters have an annual interpretation, VIX, as a measure of risk-

neutral 30-day forward-looking market return volatility, can be expressed as9

V IX(Xt) = StdQt
[

lnPt+ 1
12

]
, (69)

In order to express VIX as an explicit function in state variables, we follow Eraker and Wu (2017) in

using the property of the conditional cumulant generating function for lnPt+ 1
12

. It’s thus convenient

to first express lnPt as a function affine in state variables. Define the log price-dividend ratio as

g(σ2
t , λt) = lnG(σ2

t , λt). It then follows from (64) and a highly accurate log-linear approximation of the

price-dividend ratio G that10

lnPt = g(σ2
t , λt) + lnDt

'
(
g∗ − g∗1σ2∗ − g∗2λ∗

)
+ g∗1σ

2
t + g∗2λt + φ lnCt + σDB

D
t ,

(70)

where g1 and g2 denote partial derivatives, and letters with asterisks denote relevant functions or

variables evaluated at steady states. It follows that

V IX2(Xt) = VarQt
[

lnPt+ 1
12

]
= VarQt

[
g∗1σ

2
t+1/12 + g∗2λt+1/12 + φ lnCt+1/12 + σDB

D
t+1/12

]
= VarQt

[
g∗1σ

2
t+1/12 + g∗2λt+1/12 + φ lnCt+1/12

]
+

1

12
σ2
D.

(71)

To compute the conditional variance above, we rely on the property of cumulant generating functions.

Appendix C shows that by doing so we can write VIX-squared as a function affine in σ2
t and λt:

V IX2(σ2
t , λt) = a1/12 + c1/12σ

2
t + d1/12λt, (72)

where a1/12, c1/12 and d1/12 are three positive constants. Intuitively, the idiosyncratic noise σD only

factors its impact on a1/12, the constant component of VIX-squared: the equity market idiosyncratic

9Here, following Eraker and Wu (2017), we just model V IX2 as the risk-neutral variance of 30-day log equity return. In

Branger and Völkert (2012) and others, V IX2
t = EQt

[ ∫ t+1/12

t
(d lnPs)

2
]
. These two methods should generate very similar

level of VIX given the short horizon - one month.
10Seo and Wachter (2018) show that this type of log-linear approximation is highly accurate essentially because it

is used only after the price-dividend ratio is exactly solved out, which is different from the Campbell-Shiller log-linear
approximation usually used prior to solving the model as in many asset pricing papers. Moreover, we have verified that
Pt is actually indistinguishably exponential affine.
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noise affects the level of VIX in a fashion that is independent of the agent’s attitude towards risk.

Therefore, the VIX is given by

V IX(σ2
t , λt) =

√
a1/12 + c1/12σ

2
t + d1/12λt. (73)

Intuitively, equilibrium VIX is positively exposed to the two higher-order state variables: consumption

growth volatility and volatility jump intensity. Because both factors command a negative market price

of risk, so does VIX. This implies that in principle an asset with positive VIX exposure should earn

itself a negative premium. Examples include VIX futures and VIX call options.

5.6 VIX Futures

To provide intuition that VIX futures do command a negative expected return in the model, we follow

Eraker and Wu (2017) to consider the futures curve for VIX-squared, a hypothetical futures curve, given

by

F V IX
2
(Xt; τ) = a1/12 + c1/12E

Q[σ2
t+τ |σ2

t , λt] + d1/12E
Q[λt+τ |σ2

t , λt]. (74)

Appendix C proves the following proposition:

Proposition 3. Suppose %(·) is convex.11 Then the VIX-squared futures curve, which expression is

given in (C.52) through (C.54) in Appendix C, is upward slopping in steady-state at least for τ not too

small.

Because in steady state the expected change in VIX-squared under the objective measure is always

zero for any horizon, proposition 3 implies that the expected return on holding the VIX-squared futures

with a maturity not too short is negative, consistent with the evidence in Eraker and Wu (2017).

As shown, the VIX-squared futures price has a closed-form expression, but the VIX futures price

does not. To compute F V IX(Xt; τ), we need to deal with the square root in the expression of VIX and

thus have to reply on the Fubini’s theorem, the property of the characteristic function and finally a

numerical integration. The pricing formula is given in Appendix C.V II.

5.7 Valuing Equity Options

Before pricing VIX options, let’s first consider equity options, which values in the current framework

are homogenous of degree one with respect to the underlying stock price. To facilitate computation, we

11For example, this is true if ξV is exponentially distributed.
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divide the usual no-arbitrage equity option pricing equation through by the underlying stock price for

a normalization. Specifically, let PE(Xt, τ,K) denote the normalized price of a European put option

written on the market index with maturity τ and normalized strike K. No-arbitrage then implies

PE(Xt, τ,K) = EQt

[
e−

∫ t+τ
t rudu

(
K − Pt+τ/Pt

)+]
, (75)

where Pt and Pt+τ are respectively the equity prices at t and t + τ . Note that (70) reveals Pt+τ is

exponential affine in Xt+τ , which makes it convenient to use the generalized Fourier transform analysis

(see, e.g., Lewis (2001)). Appendix C shows that by doing so we can finally write the put price as

PE(Xt, τ,K) = − 1

2π

∫ izi+∞

izi−∞
e−iz(c

∗−lnPt)− 1
2
σ2
Dz

2τ%QX
(
− iz(φ, g∗1, g∗2)′, Xt, τ

) Kiz+1

z2 − iz
dz, (76)

where the integration is performed on any a strip parallel to the real axis in the complex z plane for

which zi ≡ Im(z) < 0, %QX represents the complex-valued discounted characteristic function defined in

(54), and c∗ is a constant given in Appendix C.V III.

If we use integral variable substitution x = z − zii, a numerically implementable pricing formula

obtains as

− 1

2π

∫ +∞

−∞
Re
[
e(zi−xi)(c∗−lnPt)− 1

2
σ2
D(x+izi)

2τ%QX

(
(zi − xi)(φ, g∗1, g∗2)′, Xt, τ

) K1−zi+xi

(x+ zii)(x+ (zi − 1)i)

]
dx,

(77)

where we only need to take the real part of the complex-valued integrand because the put price is

theoretically guaranteed to be real.12

5.8 Valuing VIX Options

A (European) VIX call option renders its holder the right, but not obligation, to obtain the difference

between the VIX index13 at an expiration date t+ τ and a pre-specified strike K. Different from equity

option, it is more convenient to directly compute VIX option price without normalization. No-arbitrage

implies that the price of the VIX call option is given by

CV IX(Xt, τ,K) = EQt

[
e−

∫ t+τ
t rudu

(
V IXt+τ −K

)+]
, (78)

12For zi > 1, (76) and (77) are also the pricing formulas for an equity call option with maturity τ and normalized strike
K.

13The standard convergence of futures price to the underlying price as time to maturity approaches zero holds regardless
of whether the underlying is tradable or not.
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where it follows from (73) that

V IXt+τ = V IX(σ2
t+τ , λt+τ ) =

√
a1/12 + c1/12σ

2
t+τ + d1/12λt+τ . (79)

To calculate the expectation in (78), we again use the generalized Fourier transform analysis. Appendix

C shows that by doing so we can finally write the VIX call price as

CV IX(Xt, τ,K) =
1

4
√
π

∫ izi+∞

izi−∞
e−iza1/12%QX

(
− iz(0, c1/12, d1/12)′, Xt, τ

)Ercf(K√−iz)
(−iz)

3
2

dz, (80)

where the integration is performed on any a strip parallel to the real axis in the complex z plane for

which zi ≡ Im(z) > 0, %QX represents the complex-valued discounted characteristic function defined

in (54), and Ercf(·) is the complex-valued complementary error function which expression is given in

Appendix C.IX.

If we use integral variable substitution x = z − zii, a numerically implementable pricing formula

obtains as

1

4
√
π

∫ +∞

−∞
Re
[
e(zi−xi)a1/12%QX

(
(zi − xi)(0, c1/12, d1/12)′, Xt, τ

)Ercf(K
√
zi − xi)

(zi − xi)
3
2

]
dx, (81)

where we only need to take the real part of the complex-valued integrand because the VIX call price is

theoretically guaranteed to be real.14 We then use equation (C.76) to compute VIX put price.

6 Quantitative Analysis

In the following, we perform parameter calibration for our model with the target toward replicating

salient features of consumption, equity, and VIX derivatives markets data.

6.1 Calibration

Table 3 displays our choices of the model parameters. To facilitate better comparison with a number

of recently developed continuous-time asset pricing models, in our model time is measured in years and

parameter values should be interpreted accordingly. A rate of time preference β equal to 2% per annum

and an expected consumption growth µ equal to 3% per annum together help give rise to an average real

14In the numerical section, we have used both the Riemann rule and the quadrature rule to approximate the integral.
They generate the same result. We also have compared the price obtained via integral with that via Monte Carlo simulation.
We found the difference is negligible as long as the VIX option is not ”too OTM”.
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yield on one-year Treasury Bill of 1.17%, which is roughly consistent with that documented in Bansal

and Yaron (2004), 0.86%. Here µ is set relatively high because we anticipate a relatively large risk

aversion or a relatively high mean volatility through calibration, as at least one of them is needed to

produce large premia on VIX derivatives as those seen in the data. We set the value of θV , the average

annualized consumption growth variance without jumps, to be 0.0004, which corresponds to a volatility

of 2% per annum, consistent with that used in Wachter (2013). With jumps, the average volatility

would be greater than 2%, but cannot be so by too much, in order to be still consistent with the U.S.

consumption growth data. A reasonable range of values for the U.S. consumption growth volatility that

most historical data agree upon is 1−3%. For example, Bansal and Yaron (2004) document a volatility

of 2.93% while Wachter (2013) documents a volatility of 1.34%.

Consistent with the literature, the stock market leverage φ is calibrated at 2.7, a value between

that in Bansal and Yaron (2004), 3, and that in Wachter (2013), 2.6. This value of leverage works

well overall in terms of explaining various market data. Implicitly, the IES, which value constitutes

a source of debate, is set to one, for tractability. Plus, as discussed in Wachter (2013), a number of

studies conclude that the reasonable values for this parameter should be somehow close to one (e.g.,

Vissing-Jørgensen (2002); Hansen, Heaton, and Li (2008); Thimme (2017)).

θλ has the interpretation as the average probability of a jump in consumption volatility per annum.

The parameter is hard to identify from monthly consumption data alone. However, studies from equity

market data, such as Eraker, Johannes, and Polson (2003), suggest that jumps in equity market return

volatility are on average 1.5 times per year, and starting from the mean level of volatility, an average

sized jump in volatility increases volatility from 15% to 24% from a posterior perspective. Given that

jumps in consumption volatility translate one-to-one into jumps in equity price and return in our model,

we are a little more conservative in setting the average jump probability to be once every other year

(θλ = 0.5) with each jump having a larger impact on equity volatility.

We choose µξ such that in equilibrium, starting from the steady-state level of VIX, an average-sized

jump in volatility increases VIX from 20.9 to 32.6, which is consistent with an average size of jump

in VIX, 11.4, computed from historical VIX data from CBOE during the period 1990-2019.15 The

unconditionally average consumption growth volatility is equal to the square root of σ̄2
t = θV +

µξθ
λ

κV
.

Given θV , µξ and θλ have been fixed, κV is set to 2.5, implying a monthly autocorrelation of 0.8 in VIX

which compares to 0.84 in the data. Our chosen consumption volatility parameters imply an average

15The number 11.4 is obtained as follows: we take monthly data of the VIX index from CBOE, identify all the months
during which VIX rises, sort all those rises in descending order, and then take the mean of the largest 15. Given the time
period considered 1990-2019, the number 15 is consistent with our earlier calibration that jumps are on average once every
other year.
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consumption volatility of 3.06%, which is slightly higher than 2.93% as documented in Bansal and Yaron

(2004), and higher than 1.34% in Wachter (2013).

[Table 3 about here.]

In order to calibrate the other model parameters, notably risk-aversion (γ), the diffusion parameter of

the volatility (σV ), the mean reversion of the jump intensity (κλ), the diffusion parameter of the jump

intensity (σλ), and the dividend growth idiosyncratic volatility (σD), we design a coarse Simulated

Methods of Moments procedure. Specifically, we search the parameter space to overall best match

the following six data moments: mean VIX (19.3); standard deviation of VIX (7.4); average monthly

return on holding one-month ATM VIX call option (−26%); average one-month ATM VIX call option

Black’76 implied volatility (0.69); monthly autocorrelation of one-month ATM VIX option Black’76

implied volatility (0.27); contemporaneous correlation between VIX and one-month ATM VIX option

Black’76 implied volatility (0.48). The values and data sources for these moments are summarized in

Tables 2 and 4. We are able to match a majority of these moments well.

We calibrate risk aversion at 14, which is slightly higher than that in Bansal and Yaron (2004) (10),

Drechsler and Yaron (2011) (9.5), and higher than that in Wachter (2013) (3) and that in Eraker and

Wu (2017) (8). Intuitively, the high risk aversion arises from the effort to reconcile sizable premia on

VIX derivatives (high risk prices) with a low consumption growth volatility (low risk prices).

σV is calibrated at 0.16. Obviously, as a volatility-of-volatility parameter, it heavily influences VIX

volatility, VIX derivatives premia, the probability distribution of VIX, and thus the contemporaneous

correlation between VIX and one-month ATM VIX option Black’76 implied volatility. The parameter

σV is again not a substitute for risk aversion since a too large σV would make the model behave

like a single-factor model. κλ is calibrated at a high value, 12, in an effort to match a low monthly

autocorrelation of one-month ATM VIX option Black’76 implied volatility. Note that the latter is not

monotonically decreasing in the former because as κλ increases, the second factor, λt, exerts a weaker

impact on VIX in equilibrium. Finally, we set σλ = 2.6 and σD = 0.1 in order to match mean VIX and

various VIX derivative premia and implied volatility. Note that VIX derivative premia are generally

decreasing with σD as the idiosyncratic risk contained in σD is not priced in equilibrium and thus only

contributes to the constant component of the VIX index, thereby decreasing VIX return’s exposure to

σ2
t and λt.
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6.2 Simulation Results

6.2.1 General Moments

Table 4 displays a list of moments from a simulation of the model at calibrated parameters, as well as

their counterparts in U.S. data. The model is discretized using an Euler approximation and simulated

at a monthly frequency (dt = 1/12) for 100,000 months. Simulating the model at higher frequencies

produces negligible differences in the results. We then aggregate the data to compute the model moments

which are largely reported on a monthly or annual basis. As seen in the table, we match a majority

but not all of the key moments that we are interested in. In particular, we match average consumption

growth volatility fairly well: 3.06 in the model vs. 2.93 in the data. In terms of equity premium,

we overshoot slightly, as our model produces 8.83% per annum. This compares to 8.33% in the CRSP

distributed in Ken French’s publicly available Mkt-Rf time-series. Our model produces an unconditional

stock market volatility of 17.75% which compares to 18.31% in post-1990 S&P 500 data.16 Our model

generates an average (one-year) risk-free rate and risk-free rate volatility on par with what we see in

the data, though the volatility of the risk-free rate is a bit higher.

Our model does not match the observed (log) price-dividend ratio very well. Empirically observed

p/d ratios vary substantially over time, and display an annualized autocorrelation that exceeds anything

we could expect to generate with our model. This is a natural consequence of the fact that our model

structure is geared toward explaining derivatives data and calibrated to do so at a relatively high

frequency. Price/dividend ratios display annualized persistence that way exceeds that seen in high-

frequency derivatives-based variables such as VIX and VVIX. Adding additional state-variables, such

as in models by Campbell and Cochrane (1999) (habit) and Bansal and Yaron (2004) (long-run persistent

consumption growth) will likely alleviate some of this but is outside the focus of the present paper.17

[Table 4 about here.]

Importantly, for the purposes of our study, we match the mean and standard deviation of the

VIX index almost exactly. The fact that mean VIX (19.46) is higher than equity return objective

volatility (17.75) illustrates the model’s ability to generate a large Variance Risk Premium. The monthly

16We compare our estimate to SPX volatility using data collected after 1990 as to make the estimate comparable to
average VIX. The CRSP value-weighted index return over the risk-free rate has an annual volatility of about 20.30% using
data from 1927-2018.

17We actually solved and recalibrated an extended version of the present model in which the introduction of persistent
long-run growth risks help alleviate the issue on pd substantially while all other moments are largely unharmed. This
version is available upon request.
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autocorrelation of the simulated VIX index is 0.8, which compares to 0.84 in the data. Turning to the

model’s ability to match key moments of VIX options data, we see that the average implied volatility

for one-month ATM VIX options, denoted E(imp volt), is estimated at 71.83 in the model simulations

which compares to 68.8 in the data. The model produces a volatility of the simulated VIX implied

volatility, denoted σ(imp volt), of 12.74 vs. 14.3 in the data - a slight miss on the low side. The

model also produces a monthly autocorrelation of one-month ATM VIX implied volatility, denoted

AC1(imp volt), of 0.49 vs. 0.27 in the data. This is quite a miss even though we have tried to increase

κλ to make the VIX implied volatility process exhibit weak persistence, while κV has to be kept small

so as to take care of the persistent VIX index process and other aspects of the model.

Our model matches the observed positive but imperfect correlation between vol-of-vol and VIX at

0.34 vs. 0.48 in the data. It is useful to consider this in relation to a model where time-varying arrival

intensity of jumps is constant λt = λ. In this case, square VIX would be a linear function of σ2
t and thus

derive its properties. From this it follows that the local variance of VIX2 will be a linear function of

σ2
t , or equivalently V IXt. This again implies that VIX options implied volatility (or simply vol-of-vol)

should be (either positively or negatively) perfectly correlated with VIX itself.

Why is a fluctuating λt process important in shaping the positive correlation between vol-of-vol and

VIX? When λt increases, first, it drives VIX up as VIX loads positively on it; second, it also drives

up vol-of-vol and thereby increasing the prices of VIX Call options. Huang, Schlag, Shaliastovich, and

Thimme (2019) propose a model where stock market spot variance follows a mean-reverting process

which volatility is driven by an independent diffusion process. The independence assumption implies

that the correlation between VIX2 and volatility-of-volatility (or VVIX) is zero18. Huang, Schlag,

Shaliastovich, and Thimme (2019) also present empirical evidence suggesting that VIX and vol-of-vol

carry negative risk premia which is true in our model: VIX is an increasing function of σ2
t and λt, both

of which have negative market risk prices, so has VIX. Since vol-of-vol is positively correlated with VIX,

it too carries a negative risk price.

6.2.2 VIX Futures Returns

[Table 5 about here.]

Table 5 compare average returns and return standard deviations for VIX Futures prices computed

from data (see Eraker and Wu (2017)) and our model. We report average daily arithmetic and loga-

18The HSST model implies that VIX2 is a linear function of stock market variance, Vt. It follows that we can write
dV IX2

t = (a+ bV IX2
t )dt+ c

√
ηtdW

2 where ηt is a mean-reverting diffusion independent of Vt and therefore V IX2
t .
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rithmic returns, and return standard deviations.19 For one-month contracts, both log and arithmetic

returns are ballpark the same for the model as in the data. At longer horizons, the model generates a too

high (negative) risk premium. This is well known in the variance-risk literature. In fact, Dew-Becker,

Giglio, Le, and Rodriguez (2017) report positive returns to long-maturity variance swaps, a finding that

cannot be reconciled with a negative volatility risk premium. Our model also matches the observed

daily return standard deviations of VIX futures almost exactly, although these moments were never

targeted in our parameter calibration.

[Figure 4 about here.]

To better understand how negative average VIX futures returns are generated in the model, Figure 4

shows the expected returns under different market conditions (low vs. high VIX). As in Eraker and Wu

(2017), Fig.7, our model generates a consistent positive difference between the Q (risk-neutral) and P

(objective) expected path of VIX, irrespective of the initial condition. Since expected returns are given

by EPt (V IXt+τ )/EQt (V IXt+τ )− 1, this implies that expected VIX futures returns are always negative

in our model.

6.2.3 VIX Option Implied Volatilities

[Table 6 about here.]

Table 6 looks at the average VIX option implied volatilities conditioning on options in consideration

being ATM, ITM, and OTM. For example, x% means that we compute the implied volatility of VIX

options conditional upon the strike being equal to x% of the same maturity futures price. This part can

be examined together with Table 7, which by contrast averages implied volatilities across the absolute

value of strike and is thus directly comparable to our Table 1. The patterns we see are similar across

Tables 6 and 7. First, for VIX calls, low (high) strikes, either measured by moneyness or absolute value,

generally have lower (higher) implied volatilities, suggesting a positively skewed underlying distribution.

Second, shorter (longer) maturities uniformly have higher (lower) implied volatilities, suggesting that

in the model the conditional variance of log VIX futures price increases with the horizon of the futures

slower than linearly, irrespective of market conditions.

Focusing on the comparison between Tables 1 and 7, at the short maturities and low strikes our

model seems to undershoot implied volatility by a bit, as we see for example a strike of 20 averaging 104%

19Here the model is re-simulated at a daily frequency, to facilitate comparison with the results in Eraker and Wu (2017).
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implied volatility in the data vs. 87% in our model. This is not a large deviation when considering that

the size of the bid-ask spread often times exceeds 20 implied volatility points - see Figure 1. However,

our model implied volatility gradually catches up with the data as strike increases, as we see a strike

of 30 averaging 125% in the data vs. 121% in the model and strike of 40 averaging 132% in the data

vs. 134% in the model. At the six month horizon our model slightly overshoots implied volatilities by

roughly 10 percentage points across all strikes. This is evidence that mean reversion of VIX in the model

is slightly slower than that in the data. On the other hand, the autocorrelation of VIX in the model

(0.80) is smaller than that in the data (0.84), suggesting, on the contrary, that VIX mean reversion

in the model is slightly faster than that in the data. The current parameter choices reflect a balance

struck between those tensions.

[Table 7 about here.]

Figures 5 and 6 further illustrate the implied volatility patterns generated by our model. While

Figure 5 shows the steady state implied volatilities and pretty much illustrates the patterns in the

previous two tables, Figure 6 shows what happens when we condition upon a high and low initial

VIX, respectively. In the low VIX case, where we have set the initial state variables very low so as to

generate a VIX of 12.5, we see that the implied volatility curves are almost everywhere increasing and

concave. This closely resembles the patterns we saw in the data on March 26, 2017 (Figure 1 bottom).

The concave implied VIX-volatility seen in the low-VIX state is related to the fact that in order to

generate a low VIX, both state-variables need to be low, implying that the second, the jump arrival

intensity, is low. This negates the effect of jumps, as they are rare and do not tremendously fatten the

right tail of the conditional distribution, which is therefore dominated by the two diffusive processes.

To understand the concavity of VIX implied volatility seen both in the data and in our model in low

and normal VIX periods, we note the following. Implied volatility is computed from Black’s model

for options on futures, which is identical to Black-Scholes with the exception that the underlying is a

futures. Thus, the model will generate a concave Implied Volatility function over some strike range,

say [K1,K2], if the log-normality displays heavier tails than the density of the underlying (i.e., VIX). It

follows therefore that if squared-VIX were to be log-normally distributed, options struck on VIX would

display a concave Implied Volatility function for strikes that exceed some threshold. This follows from

the fact that if xT is log-normal then a call on its square root, e−r(T−t)EQt [max(
√
xT − k, 0)], will have

concave implied volatility for strikes k above a threshold k > k0. As a pure mechanical fact, therefore,

VIX options will exhibit a concave Implied Volatility function above some threshold strike price if the

risk-neutral conditional density of squared VIX is close to a log-normal one.
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The top panel of Figure 6 shows Implied Volatility for VIX options under a high initial VIX. We

see that the implied volatility curves have changed to something that looks almost flat and marginally

convex especially at the left end. Again, this strikingly resembles the data we see on November 12,

2008 (Figure 1 top). In order to generate a high VIX we must simultaneously have both high spot

volatility σt and hight jump arrival intensity λt. The fact that the probability of a jump arrival is high

will fatten right tail of the conditional distribution for VIX. This generates a heavy right tail. The

fact that σt is high also increases the volatility of σ2
t itself through the square root diffusion term. The

conditional risk-neutral distribution of VIX-squared is a mixture distribution which first component

(σ2
t ) has large variance, and thus, generates heavier tails than a (log) normal. The effect of fattening

the tails dissapates with maturity, as the risk-neutral conditional distribution converges toward the

stationary stationary distribution.

[Figure 5 about here.]

[Figure 6 about here.]

6.2.4 VIX Option Returns

Figure 7 reports average returns on holding VIX call and put options to maturities. All returns are

normalized monthly. Some striking patterns are as follows. First, the model generates a negative

(positive) premium for VIX call (put) options, intuitively because the payoff of VIX call (put) is a

positive (negative) bet on σ2
t and λt both of which are negatively priced in equilibrium. In other words,

for market participants VIX call options are insurances against possible spikes in σ2
t and λt and thus

a negative premium is generated. Second, the model implies that, ceteris paribus, shorter maturity

VIX options always carry a greater premium than longer maturity ones, showing that the shorter the

maturity is, the more excessively expensive (cheap) the call (put) is. This is in principle consistent with

the downward sloping term structure of VIX option implied volatility shown in Table 6, and is true

in the data as we will analyze shortly. Third, the premia for both call and put are decreasing with

moneyness, showing that the more out-the-money the VIX call (put) is, the more pronounced its role

as a bet on (against) volatility or volatility-of-volatility. This is in principle consistent with the upward

sloping VIX option implied volatility curve across moneyness shown in Table 6.

[Figure 7 about here.]
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Table 8 further reports returns to VIX options in our model with greater details. ITM (OTM) here

indicates 15% in-the-money (out-the-money). Given VIX futures price is most of the time close to 20,

15% corresponds to 3 points, so that this table is directly comparable with Table 2. A few comments

on the similarities and dissimilarities between the data averages and the model are in order. First, the

model generates negative returns to call options, and positive returns to put options. This is consistent

with the data. The model generates negative short maturity (1 month) call returns ranging from -14%

(ITM) to -35% (OTM) which compares to -23% for both ITM and OTM’s in the data. We need to

keep in mind here that over the course of our sample, VIX spiked dramatically on several occasions,

including the financial crisis of 2008 but also the events of February 5th, 2018 discussed in Section 3.2,

leading to positive returns for OTM VIX calls. For the longer maturity six-month calls we see that

the average returns in the model are somewhat larger than those in the data. Another commonality

between the model and the data is, the term structure of (absolute) returns on VIX call is downward

sloping. For example, for ATM call, the monthly return is -0.24 for one-month vs. −0.52/6 ≈ −0.09

for six-month.

[Table 8 about here.]

The model generates average returns on ITM, ATM and OTM short maturity put options that

closely resemble those computed from data in Table 2. For longer maturity 6-month put options, our

model does generate positive average returns, but they are significantly smaller than those in the data.

In a nutshell, our model tends to overshoot premia on long-maturity calls while undershooting premia

on long-maturity puts.

Turning to an examination of higher-order return moments, we see that our model generates patterns

that are strikingly similar to what we estimate from data. For example, one-month maturity call returns

have an estimated standard deviation of 116% in the data vs. 122% in the model for in-the-moneys,

199% vs. 209% (ATM), and 337% vs. 309% (OTM). The return standard deviations are equally similar

for the short maturity puts. At the longer maturities, our model slightly undershoots return standard

deviations for calls as well as for puts. We also match the estimated skewness and kurtosis coefficients

fairly closely. One exception here is the large kurtosis coefficient computed from OTM one-month

maturity calls and puts: for the call, this coefficient is 127.73 in the model vs. 82.61 in the data; for the

put, it is 28.57 in the model vs. 9.68 in the data. In interpreting these deviations the reader should keep

in mind that higher order moments such as skewness and kurtosis are difficult to accurately estimate

from the relatively short sample of options returns.
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6.3 Comparative Static Analysis

[Figure 8 about here.]

In order to gain some additional insights into the workings of our model, we report the results of some

comparative statics. In doing so, we also emphasize the necessity of recursive preferences (γ 6= 1/ψ)

for the model to generate non-zero VIX derivatives premia. The left subplot of Figure 8 illustrates the

co-movements of six important conditional model moments with risk aversion. As shown, the equity

premium is sensitive to risk aversion universally: the equity premium increases with risk aversion almost

linearly when the latter is relatively low; and increasingly fast when the latter becomes higher. Recall

from equation (67) that equity premium reflects compensations for three sources of risks corresponding

to the model’s three state variables. The pattern of the equity premium’s variation with risk aversion

reflects the fact that market price of risk for consumption growth increases linearly with γ, whereas the

market prices of risks for volatility and its jumping risk only increase slowly with γ at the beginning

and increasingly faster afterwards.

The right subplot of Figure 8 shows the impact of risk-aversion, γ, on the market risk prices asso-

ciated with the three state-variables, λ = (γ,−b2,−b3). Since the representative agent has recursive

preferences, he is concerned about variation in his value function in the future which is affected by

risks in σ2
t and λt. Both state variables therefore enter the agent’s pricing kernel and are priced in

equilibrium. However, these two state variables are by nature higher-order. Specifically, σ2
t measures

the spot variance of consumption growth and thus is a second-order moment in terms of its relation

with consumption, while λt governs the arrival intensity of jump in σ2
t (i.e., jumping vol-of-vol) and has

third order effects on consumption. Accordingly, market risk prices associated with σ2
t and λt increase

relatively slowly with risk aversion.

Turning back onto the left subplot of Figure 8, it remains to check how other moments, besides

the equity premium, vary with risk aversion. Steady-state VIX is increasing with γ, manifesting the

former’s dependence on state variables that are priced in equilibrium. VIX is a risk neutral measure of

market volatility. A larger risk aversion implies a higher market price of risk associated with σ2
t and λt,

and thus a higher risk-neutral persistence and mean of σ2
t and λt. This implies that the average value of

VIX increases relative to objective variance, or put differently the Variance Risk Premium increases20.

The left subplot of Figure 8 also shows the steady-state return premia on one-month ATM VIX Put

and Call options. As VIX call (put) option is a (negative) volatility claim, it earns a negative (positive)

20Note that while both risk neutral and physical stock market variance increase with γ, risk-neutral variance increases
faster.
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premium. Both premia increase in absolute value with γ asymmetrically: Puts increase less than the

calls decrease. Thus, more risk aversion leads investors to have to pay a comparably higher premium

for the crash insurance offered by VIX calls than the positive premium seen for VIX puts.

Figure 8 also speaks to the necessity of the recursive preference assumption in generating non-zero

risk premia on VIX derivatives, since all premia are exactly zero when γ = 1, in which case the Duffie-

Epstein recursive preferences collapse into the CRRA preferences. With the latter neither σ2
t nor λt

would be priced in equilibrium, implying that any claim with mere exposure to σ2
t and λt would be

priced by market investors simply according to the objective measure and thus earns a zero premium.

All VIX derivative assets are examples of such a claim.

7 Concluding Remarks

This paper studies the properties of VIX derivatives prices, including the returns to buy-and-hold VIX

options positions. We document a negative return premia consistent with a negative price of volatility

and volatility jump risk. Our paper follows the by now well established literature on consumption-based

asset pricing models where persistent state dynamics generate risk premia that exceed those seen under

time separable preferences by separating risk-aversion from intertemporal elasticity of substitution, as in

Bansal and Yaron (2004), Eraker and Shaliastovich (2008), Drechsler and Yaron (2011), Wachter (2013)

and many others. Our theoretical formulation mirrors the general framework outlined in Eraker and

Shaliastovich (2008), but has the advantage that it does not require any linearization approximations.

We use this modeling framework to specify a model in which consumption volatility follows a jump-

diffusion. This is different from the consumption disaster literature, as for example Barro (2006) or

Wachter (2013), where disasters occur in consumption itself. Our model features a time-varying con-

sumption volatility and also a time-varying intensity of jumps in that volatility process. The fact that

there are two state variables that drive the aggregate consumption volatility implies that stock market

variance is actually a linear combination of these two. This is also the case for (squared) VIX, defined

here as forward-looking 30-day risk-neutral stock market volatility. Although we do not derive a closed

form expression for implied VIX volatility, it is obvious that this too is a two factor process that depends

on the two fundamental factors, σ2
t (consumption volatility) and λt (jump arrival intensity). The fact

that both physical stock market volatility and VIX depend on these two factors implies that they are

imperfectly correlated with consumption volatility. This is obviously also true in the data. Moreover,

consistent with the finding in Huang, Schlag, Shaliastovich, and Thimme (2019), VIX and implied VIX

volatility (i.e., vol-of-vol) are two imperfectly correlated and negatively priced factors in our model.
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Our model replicates many of the observed characteristics of asset market data: it is within striking

distance of the equity premium, stock market volatility, the variance risk premium, the correlation

between VIX and VVIX, but most importantly for our purposes, it appears to replicate some of the

features we observe in the VIX derivative markets data with surprising accuracy. First off, it replicates

large negative average returns to VIX futures. Second, it replicates with acceptable degree of accuracy

the return premia seen in VIX options data. This includes the higher order moments. Third, we

replicate the general shape of VIX option implied volatility functions, including the positive skewness

and downward sloping term structure.

In equity and variance swap options it is well known that implied volatilities exhibit convexity (i.e.

smile) over strikes. In our VIX option data, the smile is actually a concave frown for the most part of

our sample, and particularly so when VIX is low. When VIX is high, it surprisingly changes to a convex

smile. Even more surprisingly our model actually replicates this empirical phenomenon.

More work is needed for us to understand exactly what the forces are that drive derivative prices

during periods of extreme market stress. Our model obviously endogenizes returns to equity and with

it, returns to equity options. There are numerous studies of equity options returns; we know that OTM

put options are expensive and that their buyers experience high negative expected returns. We leave

the issues of whether the model proposed here can address this, and interestingly, whether the prices of

catastrophe insurance implied by prices of OTM equity options are more or less comparable to the price

of catastrophe insurance offered by VIX derivatives, in particular VIX call options, as future research

topics.
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Internet Appendix

Internet Appendix A: Solutions to the General Model

A.I. Value Function

The value function J(W,X) satisfies

sup
αt,Ct

{
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Wtαt
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δ′cµ(Xt) +
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δ′cΣ(Xt)Σ(Xt)

′δc +
1

A
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)
+Wtrt − Ct

)
+ J ′Xµ(Xt)

+
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2
tr
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J ′XW JWW

 Σ(Xt)Σ(Xt)
′ WtαtΣ(Xt)Σ(Xt)

′δc

Wtαtδ
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2
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+
n∑
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Eξi
[
J(Wt, Xt,i + ξi, Xt,−i)

]
li(Xt)− J(Wt, Xt)1

′l(Xt) + f(Ct, J(Wt, Xt))

}
= 0. (A.1)

In equilibrium, risk-free asset market clears: αt = 1, and the consumption claim market clears: Ct =

A−1St = A−1Wt. Substituting these policy functions into (A.1) implies

JWWt

(
δ′cµ(Xt) +

1

2
δ′cΣ(Xt)Σ(Xt)

′δc

)
+ J ′Xµ(Xt) +

1

2
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+
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]
l1(Xt)− J(Wt, Xt)1

′l(Xt) + f(A−1Wt, J(Wt, Xt)) = 0. (A.2)

Conjecture that the solution to this equation takes the form

J(W,X) =
W 1−γ

1− γ
I(X). (A.3)

It is helpful to first solve for the wealth-consumption ratio prior to solving for I(X). By definition

f(C, V ) = β(1− γ)V (lnC − 1

1− γ
ln((1− γ)V )). (A.4)

Therefore,

fC(C, V ) = β(1− γ)
V

C
. (A.5)
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The envelop condition fC = JW , together with the derivative (A.5), the conjecture (A.3) and that in

equilibrium J = V , imply

β(1− γ)
W 1−γ

1− γ
I(X)

1

A−1W
= W−γI(X).

Solving for A yields A = β−1. Given the wealth-consumption ratio, it follows that

f(βW, J(W,X)) = βW 1−γI(X)
(

ln(βW )− 1

1− γ
ln(W 1−γI(X))

)

= βW 1−γI(X)
(
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1− γ

)
. (A.6)

Now substituting (A.3) and (A.6) into (A.2) yields
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= 0, (A.7)

where δi ≡ (0, ..., 0, 1, 0, ..., 0)′ denotes a selection vector for the ith state variable. Conjecture that a

function of the form

I(X) = ea+b′X (A.8)

solves (A.7). Then

IX(X) = bI(X) (A.9)

IXX(X) = bb′I(X). (A.10)

Substituting (A.8) through (A.10) into (A.7) implies
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− 1
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= 0. (A.11)

Using equations (8) through (10) to rewrite µ(Xt), Σ(Xt)Σ(Xt)
′ and l(Xt), and making use of the

property of the trace of matrices that tr(AB) = tr(BA) whenever both AB and BA are defined, yield

an equation linear in Xt:
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Collecting terms in Xt results in the following equation system for b:

1

2
b′Hb+

(
K′ + (1− γ)δ′cH − diag(β)

)
b+ L′%(b)

+
(
%1(1− γ + b1)− %1(b1)

)
L′δc +

(1− γ)2

2
δ′cHδc + (1− γ)K′δc − L′1 = 0, (A.13)

which is a system of n equations for n unknowns (b1, b2, ..., bn). The system depends on the moment

generating functions of the jump sizes and admits an explicit solution only in special cases. There are

at least two cases in which (A.13) collapses into a quadratic equation system in Xt and can be easily

solved with a relatively low dimension of n. First, if there are no jumps with state-dependent intensities,

then L = 0. Second, if there is jump only in consumption while the jump intensity doesn’t depend on

consumption itself, then one can also verify that (A.13) becomes a quadratic system.

While multiple solutions to (A.13) possibly exist, there are at least two ways to make a choice among

them. First, Tauchen (2011) suggests choosing the solution which approaches a non-explosive limit as

certain coefficient associated with Xt in Σ(Xt)Σ(Xt)
′ approaches zero. Second, Wachter (2013) suggests

one can choose the solution that, under a simple thought experiment, makes economic sense. One such

strategy can be to consider the case that jump size is identically equal to zero while the jump intensity

is not. Because essentially those jumps should have no economic consequence, the value function should
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somehow reduce to its counterpart under the standard diffusion model. Collecting constant terms results

in the following characterization of a in terms of b:

a =
1

β

{(
(1− γ)δc + b

)′M+
1

2

(
(1− γ)δc + b

)′
h
(
(1− γ)δc + b

)
+
((
%1(1− γ + b1)− %1(b1)

)
δc + %(b)− 1

)′
l + (1− γ)β lnβ

}
. (A.14)

A.II. Risk-Free Rate

Taking the derivative of (A.1) with respect to portfolio choice αt and setting it to zero imply

δ′cµ(Xt) +
1

2
δ′cΣ(Xt)Σ(Xt)

′δc + β − rt + b′Σ(Xt)Σ(Xt)
′δc − γαtδ′cΣ(Xt)Σ(Xt)

′δc

+Eξ1
[(

1 + αt(e
ξ1 − 1)

)−γ(
eξ1 − 1

)
eb1ξ1

]
l1(Xt) = 0. (A.15)

Evaluating the above equation at αt = 1 and rearranging yield

rt = β + δ′cµ(Xt) + (
1

2
− γ)δ′cΣ(Xt)Σ(Xt)

′δc

+δ′c

((
%(b+ 1− γ)− %(b− γ)

)
· l(Xt)

)
+ δ′cΣ(Xt)Σ(Xt)

′b. (A.16)

A.III. State-Price Density

As discussed in Section 4.4, the state-price density is given by

πt = exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt). (A.17)

Now substitute Wt = β−1Ct and (A.8) into (A.3). Then taking (A.3) into (A.5) and taking the partial

derivative of (A.6) with respect to V yield, respectively,

fC(Ct, J(W (Ct), Xt)) = βγC−γt ea+b′Xt (A.18)

fV (Ct, J(W (Ct), Xt)) = β(1− γ) lnβ − β(a+ b′Xt)− β. (A.19)
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Finally, substituting (A.18) and (A.19) into (A.17) and noting lnCt = δ′cXt yield

πt = βγ exp
{
ηt− βb′

∫ t

0
Xsds+ a+ (b′ − γδ′c)Xt

}
, (A.20)

where η = β(1− γ) lnβ − βa− β. Finally, applying Ito’s Lemma on (A.20) obtains

dπt
πt−

= µπ,tdt+ (b′ − γδ′c)Σ(Xt)dBt +
(
e(b−γδc)·ξ − 1

)
dNt, (A.21)

where

µπ,t = η − βb′Xt + (b′ − γδ′c)µ(Xt) +
1

2
(b′ − γδ′c)Σ(Xt)Σ(Xt)

′(b− γδc). (A.22)

Appendix B: Proof of Convergence of State-Price Density

Eraker and Shaliastovich (2008) solve a general equilibrium pricing model with an affine jump-diffusion

structure for the state variable dynamics identical to those we use and a continuous-time extension of

the discrete-time Epstein-Zin preferences. Because there is generally no closed-form solution to that

model when the IES parameter is different from one, they also use a continuous-time extension of the

log-linear approximation (see Campbell and Shiller (1988)) to maintain model tractability. We in this

section prove that the state-price density exactly solved in this paper is actually an IES → 1 limit of

the state-price density approximately solved in Eraker and Shaliastovich (2008).21

Proof. To this end, first note the relation between the time preference parameter β in this paper and δ

in their paper

β =
1− δ
δ

. (B.1)

Because the affine structures for state variables are identical between both papers, the difference in the

state-price densities can only arise from the difference in λ, which completely determines the market

prices of various risks in the economy for both papers. The λ in Eraker and Shaliastovich (2008) is

given by

λ = γδc + (1− θ)κ1B, (B.2)

21Eraker and Shaliastovich (2008) start with the discrete-time model and try to see what the log-linearization equation
and the pricing kernel become as the time interval shrinks from one to infinitesimal. Although their such two extensions
have been widely used, people do not know theoretically how precisely they work in continuous time. Our convergence
result and continuity show that it is accurate if the IES parameter is close to one.
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where γ, δc and θ have identical interpretations as in our paper, κ1 is the slope coefficient in log-

linearization with an expression given by

κ1 =
eE ln(St/Ct)

1 + eE ln(St/Ct)
(B.3)

and B is the coefficient associated with Xt in the approximately solved equilibrium wealth-consumption

ratio:
St
Ct

= A+B′Xt. (B.4)

Because it has been shown that St
Ct

= 1
β when ψ = 1, to prove convergence the only possibility is

St
Ct

= 1
β + o(1) as ψ → 1. It follows from (B.3) that

κ1 =
1

1 + β
+ o(1) = δ + o(1) (B.5)

and from (B.4) that B = o(1). It then follows that as ψ → 1:

λ = γδc − θκ1B + κ1B

= γδc − θκ1B + o(θκ1B)

= γδc − θκ1B + o(θδB)

= γδc −
(
θδB + o(θδB)

)
+ o(θδB)

= γδc − θδB + o(θδB),

(B.6)

where the first equality follows from (B.2), the second from the fact that θ ≡ 1−γ
1−1/ψ → ∞ as ψ → 1,

and the third and the fourth from (B.5).

Note because B → 0 and θ →∞ as ψ → 1, it is possible that λ approaches a well-defined limit, but

when it does, from (B.6) the limit can only be

γδc − lim
ψ→1

θδB

= γδc − lim
ψ→1

(
χ− (1− γ)δc

)
= δc − lim

ψ→1
χ,

(B.7)
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where the second equality follows from the definition of the vector χ in Eraker and Shaliastovich (2008).

Therefore, it follows from comparing (21) with (B.7) that what is only left to show becomes

δc − lim
ψ→1

χ = γδc − b

or

lim
ψ→1

χ = (1− γ)δc + b. (B.8)

Let’s reproduce the equation system that χ solves, which is equation (2.12) in Eraker and Shaliastovich

(2008):

K′χ− θ(1− κ1)B +
1

2
χ′Hχ+ L′

(
%(χ)− 1

)
= 0, (B.9)

which after we substituting in a rearrangement of the definition of χ, θB = χ−(1−γ)δc
κ1

, becomes

K′χ− 1− κ1

κ1

(
χ− (1− γ)δc

)
+

1

2
χ′Hχ+ L′

(
%(χ)− 1

)
= 0. (B.10)

Therefore, to show (B.8), by continuity we only need to show that χ = (1− γ)δc + b solves the ψ → 1

limit of equation (B.10), which is

K′χ− β
(
χ− (1− γ)δc

)
+

1

2
χ′Hχ+ L′

(
%(χ)− 1

)
= 0. (B.11)

This is actually true since we exactly reproduce (A.13) after substituting χ = (1− γ)δc + b into (B.11).

The above argument together establishes that whenever there is a solution λ(ψ) in Eraker and

Shaliastovich (2008) one can find a solution λ of our model which it converges to as ψ → 1.

Appendix C: Solutions to the VIX Model

C.I. Value Function and State-Price Density

Define Xt = (lnCt, σ
2
t , λt)

′ and Bt = (BC
t , B

V
t , B

λ
t )′. It follows that the process for Xt is equivalent to

dXt = (M+KXt)dt+ Σ(Xt)dBt + ξ · dNt; M = (µ, κV θV , κλθλ)′ (C.1)

K =


0 −1

2 0

0 −κV 0

0 0 −κλ

 ; Σ(Xt) =


σt 0 0

0 σV σt 0

0 0 σλ
√
λt

 ; Σ(Xt)Σ(Xt)
′ = h+

3∑
i=1

HiXt,i (C.2)
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h = H1 =


0

0

0

 ; H2 =


1

σ2
V

0

 ; H3 =


0

0

σ2
λ

 (C.3)

ξ = (0, ξV , 0)′; dNt = (0, dNt, 0)′; %(u) = (0, %(u2), 0)′, (C.4)

and the jump intensities are summarized by

l(Xt) = l + LXt; l = (0, 0, 0)′; L =


0 0 0

0 0 1

0 0 0

 . (C.5)

Define b = (b1, b2, b3)′. Then (A.13) implies that b should solve

−βb1 = 0 (C.6)

1

2
σ2
V b

2
2 − (κV + β)b2 +

1

2
γ(γ − 1) = 0 (C.7)

1

2
σ2
λb

2
3 − (κλ + β)b3 + %(b2)− 1 = 0. (C.8)

It follows from (C.6) that b1 = 0, and from (C.7) that

b2 =
(κV + β)±

√
(κV + β)2 − σ2

V γ(γ − 1)

σ2
V

. (C.9)

Here we follow Tauchen (2011) to choose the negative root in (C.9), since otherwise b2 would explode

as σV → 0. Then (C.8) implies

b3 =
(κλ + β)±

√
(κλ + β)2 − 2σ2

λ(%(b2)− 1)

σ2
λ

. (C.10)

Once again we choose the negative root in (C.10). After solving out b we apply (A.14) to obtain

a =
1

β

{
(1− γ)(µ+ β lnβ) + b2κ

V θV + b3κ
λθλ
}
. (C.11)

Then apply (A.16) to obtain the risk-free rate

rt = Φ0 + Φ′1Xt (C.12)
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where

Φ0 = µ+ β; Φ1 = (0,−γ, 0)′. (C.13)

Applying (A.21) then implies the state-price density obeys

dπt
πt−

= −rtdt− Λ′tdBt +
(
eb2ξV − 1

)
dNt − λtE[eb2ξV − 1]dt (C.14)

Λt = [γσt,−b2σV σt,−b3σλ
√
λt]
′. (C.15)

Using Theorem 1, the evolution of the state variables under the equivalent risk-neutral Q measure

induced by the state-price density is given by

dXt = (MQ +KQXt)dt+ Σ(Xt)dB
Q
t + ξQV · dN

Q
t ; MQ = (µ, κV θV , κλθλ)′ (C.16)

KQ =


0 −1

2 − γ 0

0 −κV + b2σ
2
V 0

0 0 −κλ + b3σ
2
λ

 ; dBQ
t ≡


dBC,Q

t

dBV,Q
t

dBλ,Q
t

 =


dBC

t

dBV
t

dBλ
t

+ Λtdt (C.17)

lQ(Xt) = lQ + LQXt =


0

0

0

+


0 0 0

0 0 %(b2)

0 0 0

Xt; %Q(u) =


0

%(u2+b2)
%(b2)

0

 . (C.18)

C.II. Equity Price

In order to price the equity claim, let’s compute the discounted characteristic function %QX(u,Xt, τ)

evaluated at u = (φ, 0, 0)′, which, as shown by Duffie, Pan, and Singleton (2000), is equal to eα(τ)+β(τ)′Xt

with α(τ) and β(τ) solving the following ODEs:

Riccati Equations for Discounted Characteristic Function:

β̇(τ) = −Φ1 +KQ′β(τ) +
1

2
β(τ)′Hβ(τ) + LQ

′(
%Q(β(τ))− 1

)
(C.19)

α̇(τ) = −Φ0 +MQ′β(τ) +
1

2
β(τ)′hβ(τ) + lQ

′(
%Q(β(τ))− 1

)
(C.20)

with boundary conditions α(0) = 0, β(0) = (φ, 0, 0). Given the risk-neutral parameters above, the ODEs

become

β̇1(τ) = 0 (C.21)
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β̇2(τ) =
1

2
σ2
V β

2
2(τ) + (b2σ

2
V − κV )β2(τ) +

1

2
β2

1(τ)− (
1

2
+ γ)β1(τ) + γ (C.22)

β̇3(τ) =
1

2
σ2
λβ

2
3(τ) + (b3σ

2
λ − κλ)β3(τ) + %

(
β2(τ) + b2

)
− %(b2) (C.23)

α̇(τ) = −β − µ+ µβ1(τ) + κV θV β2(τ) + κλθλβ3(τ). (C.24)

Together with boundary conditions, (C.21) implies β1(τ) = φ, ∀τ . Then as long as 1 < φ < 2γ the

solution to (C.22) is given by the following closed form:

β2(τ) =
2(φ− 1)(γ − 1

2φ)
(
1− e−ηφτ

)
(ηφ + b2σ2

V − κV )
(
1− e−ηφτ

)
− 2ηφ

(C.25)

where

ηφ =

√
(b2σ2

V − κV )2 + 2(φ− 1)(γ − 1

2
φ)σ2

V . (C.26)

Note that since 1 < φ < 2γ the term inside the square root is guaranteed to be positive. Moreover,

ηφ > |b2σ2
V − κV | ≥ b2σ

2
V − κV , implying that the denominator (ηφ + b2σ

2
V − κV )

(
1 − e−ηφτ

)
− 2ηφ is

strictly negative for all τ . Therefore, this argument establishes that β2(τ) < 0 for all τ . Noting the

similarity between the forms of equations (C.22) and (C.23), it then follows that a similar argument as

above can establish that β3(τ) < 0 for all τ , as long as %
(
β2(τ)+b2

)
−%(b2) < −ε for all τ for some ε > 0.

But the latter is actually satisfied since β2(τ) < 0,∀τ and %(·) is an increasing function. We’ve shown

that β2(τ) < 0, β3(τ) < 0 for all τ . This is important because the sign of β2(τ) and β3(τ) respectively

finally determines how equity price responds to σ2
t and λt. The fact that β2(τ) < 0, β3(τ) < 0 for all τ

implies that the equity price is decreasing in both σ2
t and λt (recall (63) and (64)). This completes the

proof of proposition 2. Generally (C.23) and (C.24) do not admit closed-form solutions and turn out to

become (61) and (62), which we can solve numerically

C.III. Equity Premium

We solve for the equity premium analytically. A familiar no-arbitrage condition on the equity market

is that the discounted gains process πtPt +
∫ t

0 πsDsds is a P-martingale (for its derivation, see e.g.,

Appendix A.IV. of Wachter (2013)). It follows that the drift term in Et
[d(πtPt+∫ t

0 πsDsds
)

πt−Pt−

]
is zero.

Using Ito’s Lemma, this implies

µπ,t + µD,t − [φσt,
G1

G
σV σt,

G2

G
σλ
√
λt]Λt +

G1

G
κV (θV − σ2

t ) +
G2

G
κλ(θλ − λt)

+
1

2

G11

G
σ2
V σ

2
t +

1

2

G22

G
σ2
λλt +

Dt−

Pt−
+ λtE

[
eb2ξV

G(σ2
t + ξV , λ)

G(σ2
t , λ)

− 1
]

= 0, (C.27)
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where µπ,t and µD,t represent respectively the drift term in dπt
πt−

and dDt
Dt−

. Use µP,t to denote the drift

term in dPt
Pt−

, which, when Ito’s Lemma applied upon, implies

µP,t +
Dt−

Pt−
− rt = µD,t + µπ,t +

G1

G
κV (θV − σ2

t ) +
G2

G
κλ(θλ − λt)

+
1

2

G11

G
σ2
V σ

2
t +

1

2

G22

G
σ2
λλt +

Dt−

Pt−
+ λtE

[
eb2ξV − 1

]
, (C.28)

where we have used (27) to substitute rt. Rearranging (C.27) properly and then substituting into (C.28)

give rise to the expression for the equity premium conditional on no jumps occurring:

µP,t +
Dt−

Pt−
− rt =

[
φσt,

G1

G
σV σt,

G2

G
σλ
√
λt
]
Λt + λtE

[
eb2ξV (1− G(σ2

t + ξV , λt)

G(σ2
t , λt)

)
]
. (C.29)

After accounting for the expected percentage change in equity price if a jump to volatility occurs, we

obtain the population equity premium:

ret − rt = σ′P,tΛt + λtE
[(
eb2ξV − 1

)(
1− G(σ2

t + ξV , λt)

G(σ2
t , λt)

)]
(C.30)

where

σP,t =
[
φσt,

G1

G
σV σt,

G2

G
σλ
√
λt
]′
. (C.31)

C.IV. Equity Price Dynamics under Q

We solve for the dynamics of the log equity price under the Q measure. Ito’s Lemma implies that under

P measure:

dPt
Pt−

=
(
µD,t +

G1

G
κV (θV − σ2

t ) +
G2

G
κλ(θλ − λt) +

1

2

G11

G
σ2
V σ

2
t +

1

2

G22

G
σ2
λλt

)
dt

+σ′P,tdBt + σDdB
D
t +

[G(σ2
t + ξV , λt)

G(σ2
t , λt)

− 1
]
dNt, (C.32)

where µD,t denotes the drift term in dDt
Dt−

. It follows again from Ito’s Lemma that (after some algebra)

d lnPt =
(
φ(µ− 1

2
σ2
t ) +

G1

G
κV (θV − σ2

t ) +
G2

G
κλ(θλ − λt) +

1

2
(
G11

G
− G2

1

G2
)σ2
V σ

2
t +

1

2
(
G22

G
− G2

2

G2
)σ2
λλt

)
dt

+σ′P,tdBt + σDdB
D
t + ln

[G(σ2
t + ξV , λt)

G(σ2
t , λt)

]
dNt. (C.33)
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By plugging in the expressions for the diffusions under Q measure in equation (C.17) into (C.33) and

replacing ξV and Nt with their counterparts under Q, we recover the dynamics of the log equity price

under Q as

d lnPt =
(
φ(µ− 1

2
σ2
t ) +

G1

G
κV (θV − σ2

t ) +
G2

G
κλ(θλ − λt)− σ′P,tΛt

+
1

2
(
G11

G
− G2

1

G2
)σ2
V σ

2
t +

1

2
(
G22

G
− G2

2

G2
)σ2
λλt

)
dt+ σ′P,tdB

Q
t + σDdB

D
t + ln

[G(σ2
t + ξQV , λt)

G(σ2
t , λt)

]
dNQ

t . (C.34)

C.V. VIX

By definition, V IX2(Xt) = VarQt
[

lnPt+ 1
12

]
= VarQt

[
ln P̃t+ 1

12

]
+ 1

12σ
2
D, where we have separated the

idiosyncratic noise out and ln P̃ denotes the portion of the log equity price that only involves systematic

risk. The conditional cumulant generating function for ln P̃t+ 1
12

is given by

Φ(u) = lnEQt e
u ln P̃

t+ 1
12 (C.35)

= lnEQt e
uλ′XXt+ 1

12 (C.36)

= α(uλX , t, t+
1

12
) + β′(uλX , t, t+

1

12
)Xt (C.37)

where

λX ≡ (φ, g∗1, g
∗
2)′. (C.38)

Therefore, using the property of the cumulant generating function, we see that VarQt
[

ln P̃t+ 1
12

]
=

ã1/12 + b1/12 lnCt + c1/12σ
2
t + d1/12λt, where ã1/12, b1/12, c1/12 and d1/12 are the second derivatives w.r.t.

u of α(uλX , t, t + 1
12), β1(uλX , t, t + 1

12), β2(uλX , t, t + 1
12) and β3(uλX , t, t + 1

12) evaluated at u =

0, respectively. Under appropriate technique conditions (see Duffie, Pan, and Singleton (2000)), let

α(τ), β(τ) solve:

Riccati Equations for Cumulant Generating Function:

β̇(τ) = KQ′β(τ) +
1

2
β(τ)′Hβ(τ) + LQ

′(
%Q(β(τ))− 1

)
(C.39)

α̇(τ) =MQ′β(τ) +
1

2
β(τ)′hβ(τ) + lQ

′(
%Q(β(τ))− 1

)
(C.40)
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with boundary conditions α(0) = 0, β(0) = uλX . Then α(uλX , t, t + 1
12) = α(1/12) and β(uλX , t, t +

1
12) = β(1/12). It turns out those ODEs are

β̇1(τ) = 0 (C.41)

β̇2(τ) =
1

2
σ2
V β

2
2(τ) + (b2σ

2
V − κV )β2(τ) +

1

2
β2

1(τ)− (
1

2
+ γ)β1(τ) (C.42)

β̇3(τ) =
1

2
σ2
λβ

2
3(τ) + (b3σ

2
λ − κλ)β3(τ) + %

(
β2(τ) + b2

)
− %(b2) (C.43)

α̇(τ) = µβ1(τ) + κV θV β2(τ) + κλθλβ3(τ). (C.44)

Together with boundary conditions, the solutions are

β1(τ) = uφ, ∀τ (C.45)

β̇2(τ) =
1

2
σ2
V β

2
2(τ) + (b2σ

2
V − κV )β2(τ)− 1

2
uφ
(
2γ + 1− uφ

)
(C.46)

β̇3(τ) =
1

2
σ2
λβ

2
3(τ) + (b3σ

2
λ − κλ)β3(τ) + %

(
β2(τ) + b2

)
− %(b2) (C.47)

α̇(τ) = µφu+ κV θV β2(τ) + κλθλβ3(τ). (C.48)

Here β1(τ) has a closed-form solution, while β2(τ), β3(τ), α(τ) do not.22 It follows immediately from

(C.45) that b1/12 = 0, i.e., VIX does not explicitly depend on current consumption. Finally, we can

write V arQt
[

ln P̃t+ 1
12

]
as an affine function in σ2

t and λt:

VarQt
[

ln P̃t+ 1
12

]
= ã1/12 + c1/12σ

2
t + d1/12λt, (C.49)

where both c1/12 and d1/12 can be shown to be positive coefficients. And

V IX2(Xt) =
1

12
σ2
D + ã1/12 + c1/12σ

2
t + d1/12λt. (C.50)

For notational convenience, we compound the first two constant terms in (C.50) and denote it as a1/12.

Then

V IX(Xt) =
√
a1/12 + c1/12σ

2
t + d1/12λt. (C.51)

22β2(τ) does actually admit a closed-form solution. But due to its complication, we numerically solve it
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C.VI. Proof of Proposition 3

Proof. The steady-state levels of σ2
t and λt are θV +

µξθ
λ

κV
and θλ, respectively. Recall that the risk-

neutral dynamics of the state variables are summarized in (48) through (51). One can easily verify that

(49) implies

EQ[λt+τ |σ2
t , λt] = λte

−κλ,Qτ + θλ,Q
(
1− e−κλ,Qτ

)
. (C.52)

Then (C.52), an application of Ito’s Lemma under Q to obtain d
(
σ2
t e
κV,Qt

)
and then integrating, and

an application of the law of iterated expectations together imply

EQ[σ2
t+τ |σ2

t , λt] = σ2
t e
−κV,Qτ +

(
θV,Q +

θλ,QµQξ %(b2)

κV,Q

)(
1− e−κV,Qτ

)

+µQξ %(b2)
λt − θλ,Q

κV,Q − κλ,Q
(
e−κ

λ,Qτ − e−κV,Qτ
)
. (C.53)

Note that the VIX-squared futures curve in steady-state is given by

F V IX
2

t (τ) = a1/12 + c1/12E
Q[σ2

t+τ |σ2
t = θV +

µξθ
λ

κV
, λt = θλ]

+d1/12E
Q[λt+τ |σ2

t = θV +
µξθ

λ

κV
, λt = θλ]. (C.54)

Since c1/12 and d1/12 are positive constants, to show the futures curve is upward sloping, we only need

to show EQ[σ2
t+τ |θV +

µξθ
λ

κV
, θλ] and EQ[λt+τ |θV +

µξθ
λ

κV
, θλ] are both increasing in τ . That the latter is

increasing in τ for all τ follows from θλ < θλ,Q. We only need to show the former is increasing in τ .

Now it follows from (C.53) that taking the derivative of EQ[σ2
t+τ |θV +

µξθ
λ

κV
, θλ] with respect to τ results

in two components.

The first one is

e−κ
V,Qτ

{
κV,Q(θV,Q − θV ) +

(
θλ,QµQξ %(b2)−

κV,Qµξθ
λ

κV
)}
. (C.55)

There are again two components. The first one is obviously positive since θV,Q > θV . The second one

can be shown proportional to κV θλ,QµQξ %(b2)−κV,Qθλµξ, where κV θλ,Q > κV,Qθλ since κV > κV,Q while

θλ < θλ,Q. We only need to show µQξ %(b2) > µξ to show the second component is positive. Using the

property of moment generating functions, it is equivalent to %′(b2) > %′(0), which is guaranteed by the

assumption that %(·) is convex. Therefore, (C.55) is positive.
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The second one is proportional to

1

κV,Q − κλ,Q
{
κλ,Qe−κ

λ,Qτ − κV,Qe−κV,Qτ
}
, (C.56)

which is positive if and only if xe−τx is decreasing in x. Taking the derivative of the former with respect

to x yields e−τx(1− τx), which is negative when τ is not too small.

C.VII. VIX Futures Pricing

To deal with the square root in the expression of VIX, we adopt the numerical integration method in

Appendix A.4. of Eraker and Wu (2017) to compute F V IXt (τ):

F V IXt (τ) = EQt [
√
V IX2

t+τ ]

=
1

2
√
π

∫ ∞
0

1− EQt [e−sV IX
2
t+τ ]

s3/2
ds

=
1

2
√
π

∫ ∞
0

1− e−a1/12sEQt [e−s(0,c1/12,d1/12)′Xt+τ ]

s3/2
ds

=
1

2
√
π

∫ ∞
0

1− e−a1/12seα(s,τ)+β(s,τ)′Xt

s3/2
ds

=
1

2
√
π

∫ ∞
−∞

e−s/2
(
1− e−a1/12eseα(es,τ)+β(es,τ)′Xt

)
ds.

(C.57)

The second equality is a mathematical result using Fubini’s theorem. The fourth equality follows from

the definition of the (undiscounted) characteristic function, where α(s, τ) and β(s, τ) are the solutions

(evaluated at τ) to the ODE system (C.41) through (C.44) with boundary conditions α(0) = 0;β(0) =

(0,−c1/12s,−d1/12s)
′. The last equality follows from a change of variable to make the integrand bell

shaped for easier numerical computation.

C.VIII. Equity Option Pricing

The normalized price of an equity put option is

PE(Xt, τ,K) = EQt

[
e−

∫ t+τ
t rudu

(
K − Pt+τ/Pt

)+]
(C.58)

= EQt

[
e−

∫ t+τ
t rudu

(
K − elnPt+τ−lnPt

)+]
. (C.59)
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Using the Parseval identity (a theorem saying that the payoff function for an option stays unchanged

under first a generalized Fourier transform and then a reverse generalized Fourier transform; see e.g.,

Lewis (2001)), we have

PE(Xt, τ,K) = EQt

[
e−

∫ t+τ
t rudu

(
K − elnPt+τ−lnPt

)+]
(C.60)

=
1

2π
EQt

[ ∫ izi+∞

izi−∞
e−

∫ t+τ
t rudue−iz(lnPt+τ−lnPt)ω̂(z)dz

]
, (C.61)

where the generalized Fourier transform of the payoff function of the put option (K − ex)+ is given by

ω̂(z) ≡
∫ +∞

−∞
eizx(K − ex)+dx (C.62)

= − Kiz+1

z2 − iz
, (C.63)

for zi ≡ Im(z) < 0 (we restrict the imaginary part of z to be smaller than zero because, as one can easily

verify, the integral in (C.62) exists if and only if Im(z) < 0). Then, taking the expectation operator

inside the integral in (C.61) yields

PE(Xt, τ,K) = − 1

2π

∫ izi+∞

izi−∞
EQt

[
e−

∫ t+τ
t rudue−iz(lnPt+τ−lnPt)

] Kiz+1

z2 − iz
dz (C.64)

= − 1

2π

∫ izi+∞

izi−∞
e−iz(c

∗−lnPt)− 1
2
σ2
Dz

2τ%QX
(
− iz(φ, g∗1, g∗2)′, Xt, τ

) Kiz+1

z2 − iz
dz, (C.65)

where the second line follows from the definition of the discounted characteristic function and equation

(70). Here c∗ ≡ g∗ − g∗1σ2∗ − g∗2λ∗.

C.IX. VIX Call Option Pricing

The VIX call price can be written as

CV IX(Xt, τ,K) = EQt

[
e−

∫ t+τ
t rudu

(
V IXt+τ −K

)+]
(C.66)

= EQt

[
e−

∫ t+τ
t rudu

(√
a1/12 + c1/12σ

2
t+τ + d1/12λt+τ −K

)+]
. (C.67)
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Using the Parseval identity, we obtain

CV IX(Xt, τ,K) = EQt

[
e−

∫ t+τ
t rudu

(√
a1/12 + c1/12σ

2
t+τ + d1/12λt+τ −K

)+]
(C.68)

=
1

2π
EQt

[ ∫ izi+∞

izi−∞
e−

∫ t+τ
t rudue−iz(a1/12+c1/12σ

2
t+τ+d1/12λt+τ )ω̂(z)dz

]
, (C.69)

where the generalized Fourier transform of the payoff function of the call option
(√
x−K

)+
is given by

ω̂(z) ≡
∫ +∞

−∞
eizx(
√
x−K)+dx (C.70)

=

√
πErcf

(
K
√
−iz

)
2(−iz)

3
2

(C.71)

for zi ≡ Im(z) > 0 (we restrict the imaginary part of z to be greater than zero because, as one can

easily verify, the integral in (C.70) exists if and only if Im(z) > 0). Here Ercf(·) is the complex-valued

complementary error function with an expression given by

Ercf(z) = 1− 2√
π

∫ z

0
e−u

2
du, (C.72)

for any complex number z. Then, taking the expectation operator inside the integral in (C.69) and

using the definition of the discounted characteristic function under risk-neutral measure as defined in

(54), we can rewrite the expression for the call price in the following way:

CV IX(Xt, τ,K) =
1

4
√
π

∫ izi+∞

izi−∞
e−iza1/12%QX

(
− iz(0, c1/12, d1/12)′, Xt, τ

)Ercf(K√−iz)
(−iz)

3
2

dz, (C.73)

where the integration is performed on any a strip parallel to the real axis in the complex z plane for

which zi ≡ Im(z) > 0.

C.X. VIX Put Option Pricing

For VIX put, the Fourier transform of its payoff function
(
K −

√
x
)+

is given by

ω̂(z) = −
√
π

2

1

(−iz)3/2

(
1− Ercf(K

√
−iz)

)
(C.74)
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for zi ≡ Im(z) < 0. Thus, to derive its pricing formula we only need to insert equation (C.74) into

(C.69), which gives:

P V IX(Xt, τ,K) = − 1

4
√
π

∫ izi+∞

izi−∞
e−iza1/12%QX

(
−iz(0, c1/12, d1/12)′, Xt, τ

) 1

(−iz)3/2

(
1−Ercf(K

√
−iz)

)
dz.

(C.75)

If we use integral variable substitution x = z−zii, a numerically implementable pricing formula obtains

as

− 1

4
√
π

∫ +∞

−∞
Re
[
e(zi−xi)a1/12%QX

(
(zi − xi)(0, c1/12, d1/12)′, Xt, τ

)1− Ercf(K
√
zi − xi)

(zi − xi)
3
2

]
dx. (C.76)

C.XI. Black (1976) Implied Volatility

We are interested in investigating the implied volatilities for VIX call options, which, compared with

the usual Black-Scholes implied volatilities for stock options, warrant some extra comments.

The underlying asset of a VIX option is not the VIX index itself. Instead, it is a VIX futures contract

with the same maturity as the option. Therefore, we should equate the pricing formula of options on

futures in Black (1976) with the VIX option price either in the data or from the model and then invert

the equation to obtain the implied volatility. Specifically, consider a VIX call option with strike K,

time to maturity τ , and underlying price Ft(τ). Let the corresponding continuously compounded yield

be rt(τ). Under the assumptions of Black (1976), the price of the VIX call option should be given by23

BC(F V IXt (τ),K, τ, rt(τ), σ) = e−rt(τ)τ
[
F V IXt (τ) ·N(d1)−K ·N(d2)

]
, (C.77)

where N(·) is the standard normal cumulative distribution function and

d1 =
ln(F V IXt (τ)/K) + σ2τ/2

σ
√
τ

(C.78)

d2 = d1 − σ
√
τ . (C.79)

Then the model-implied implied volatility σimpt = σimp(Xt, τ,K) should solve

CV IX(Xt, τ,K) = BC(F V IXt (τ),K, τ, rt(τ), σimpt )

= BC(F V IX(Xt, τ),K, τ, r(Xt, τ), σimp(Xt, τ,K)),
(C.80)

23Note that no-arbitrage implies V IXt = e−rt(τ)τFV IXt (τ) if VIX were tradable. In this case, the Black (1976) formula
reduces to the Black and Scholes (1973) formula.
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where CV IX(Xt, τ,K) is given by (C.73), rt(τ) = − ln
(
%QX(0, Xt, τ)

)
/τ by the definition of the dis-

counted characteristic function, and F V IXt (τ) is given by (C.57).
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Implied Vol. on November 12, 2008, 12:50pm (VIX=65.48)
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Implied Vol. on April 26, 2017, 12:50pm (VIX=10.78)
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Figure 1: Implied VIX volatility on November 12, 2008 and March 26, 2017. The shaded areas
represent the IV computed from bids and asks.
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Figure 2: Scatter plot of one-month futures prices vs. one-month ATM implied VIX volatility.
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Figure 3: Marked-to-market value of 30 day options.
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Figure 4: VIX futures curves and holding period returns

The figure illustrates conditional VIX futures term structures and conditional expected holding period
returns on VIX futures. Left: VIX futures curves (Q) and the objective-measure expected payoffs (P).
Right: expected holding period return, EPt (V IXt+τ )/EQt (V IXt+τ )− 1, to a long VIX futures position.
State variables conditioned upon for each row are the following. First row: steady state σ2

t and λt;
second row: low σ2

t and steady state λt; third row: high σ2
t and steady state λt; forth row: steady state

σ2
t and low λt; last row: steady state σ2

t and high λt.
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Figure 5: Black’76 implied volatility curves for VIX options in the model

This figure plots a full spectrum of implied volatilities computed from equating the Black(1976) futures
option pricing formula with the VIX option price in the model at steady state. The horizontal axis
denotes the absolute value of the strike. Implied volatilities are computed for VIX options with four
maturities: one-month, two-month, three-month and six-month. There are three pronounced character-
istics. First, there is clearly a timing premium across all strikes (given a strike, shorter-maturity option
is always more ”overpriced”), which reflects the mean reversion of the VIX index. Second, irrespective
of maturity, the implied volatility curve is sloping upwards concavely to the right across most strikes.
Third, the implied volatility curve eventually slopes downwards when strike exceeds a threshold.
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Figure 6: Black’76 implied volatility curves for VIX options in the model: conditional analysis

The figure plots implied volatility curves for VIX options in the model, respectively conditional on
today’s VIX being high and low. In the upper case, we set both state variables very high: σ2

t = 10σ2
ss

and λt = 10λss, implying a very high VIX, 54. In the lower case, we set both state variables at minimum
values: σ2

t = λt = 0, implying a small value of VIX, 12.5.
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Figure 7: Average returns on VIX options

This upper (lower) figure plots average monthly returns on VIX calls (puts) in the model. In each case,
we consider four maturities: 1,2,3, and 6 month, and the horizontal axis denotes the strike of relevant
option normalized by its underlying asset price.
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Figure 8: Comparative statics w.r.t. risk aversion

The figure illustrates conditional model moments (left) and market risk prices (right) as a function of
the risk aversion, γ, conditional on state variables being at their respective steady state values. The
left subplot reports steady-state VIX (VIX), implied volatility of ATM VIX options (implied vol-of-
vol), instantaneous steady-state equity premium (equity premium), steady-state one-month VIX futures
returns (one-month VIX futures premium), and average returns to ATM VIX calls and VIX puts. The
right subplot reports the dependence of the market prices of risks for the model’s three state variables,
as represented by (γ,−b2,−b3), on risk aversion, γ. The plot uses γ in the range from 1 to 16.2 - the
upper limit for the existence of a model solution.
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Tables

Table 1: Average Implied Black ’76 Volatility

The table reports average implied Black ’76 volatility for VIX options over the
2006-2018 period by maturity and strike.

Maturity (months)

1 2 3 6
strike
12 0.70 0.59 0.54 0.45
14 0.77 0.66 0.60 0.50
16 0.88 0.74 0.66 0.50
18 0.97 0.79 0.70 0.52
20 1.04 0.83 0.73 0.54
22 1.11 0.88 0.76 0.56
24 1.14 0.92 0.80 0.58
26 1.18 0.95 0.82 0.59
28 1.22 0.98 0.84 0.60
30 1.25 1.00 0.86 0.60
32 1.26 1.02 0.88 0.61
34 1.28 1.04 0.90 0.62
36 1.28 1.06 0.91 0.62
38 1.30 1.08 0.93 0.62
40 1.32 1.09 0.94 0.63
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Table 2: VIX Option Returns

The table reports sample statistics on returns to option positions in VIX. Returns are defined as payoffT /p0 − 1
where T is the expiration and p0 is the price (midpoint) of the option one month or six month prior to expiration.
ATM is defined as the option with strike closest to the option-implied Futures price of the same maturity as the
option. An OTM (ITM) call is defined as a call option with a strike that is 3 points higher(lower) than ATM.
OTM/ITM conversely defined for put options. Confidence intervals (CI) for the expected returns are computed
by bootstrapping the return distribution.

CALLS PUTS

ITM ATM OTM ITM ATM OTM

One month maturity
mean -0.23 -0.26 -0.23 0.07 0.13 0.20
95% CI [-0.34,-0.10] [-0.44,-0.02] [-0.51,0.31] [-0.00,0.14] [0.02,0.24] [-0.01,0.46]

std 1.16 1.99 3.37 0.65 1.00 2.22
Sharpe1 -0.70 -0.46 -0.23 0.35 0.43 0.31
Sharpe2 -0.62 -0.42 -0.37 0.23 0.32 0.18
skew 2.96 4.44 7.79 -0.15 0.31 2.47
kurt 14.76 29.14 82.61 2.31 1.87 9.68

Six month maturity
mean -0.26 -0.34 -0.17 0.31 0.40 0.51
95% CI [-0.48,0.03] [-0.79,1.17] [-0.50,0.44] [0.19,0.43] [0.24,0.55] [0.30,0.74]

std 1.74 2.08 2.93 0.81 1.02 1.48
Sharpe1 -0.22 -0.23 -0.08 0.52 0.54 0.48
Sharpe2 -0.92 -0.37 -0.78 0.47 0.07 0.28
skew 3.53 3.80 4.92 -0.30 -0.02 0.48
kurt 17.05 17.18 28.79 2.16 1.84 2.00
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Table 3: Parameters for the VIX Model

The table reports parameter values for the VIX model in Section 5. The processes for log consumption, consump-
tion growth volatility, volatility jump arrival intensity, and log dividend are respectively given by

d lnCt = (µ− σ2
t

2
)dt+ σtdB

C
t

dσ2
t = κV (θV − σ2

t )dt+ σV σtdB
V
t + ξV dNt

dλt = κλ(θλ − λt)dt+ σλ
√
λtdB

λ
t

d lnDt = φd lnCt + σDdB
D
t

where Nt is a Poisson process with instantaneous arrival intensity λt, and the jump size ξV is exponentially
distributed with mean µξ. The representative agent has recursive utility given by

Vt = Et

∫ ∞

t

f(Cs, Vs)ds

f(C, V ) = β(1− γ)V (lnC − 1

1− γ
ln((1− γ)V ))

Parameters values are interpreted in annual terms.
Rate of time preference β 0.02
Relative risk aversion γ 14
Average growth in consumption µ 0.03
Mean reversion of volatility process κV 2.5
Average volatility-squared without jumps θV 0.0004
Diffusion scale parameter of volatility process σV 0.16
Average volatility jump size µξ 0.005
Mean reversion of jump arrival intensity process κλ 12
Average intensity of a jump in volatility θλ 0.5
Diffusion scale parameter of jump arrival intensity process σλ 2.6
Stock market leverage φ 2.7
Idiosyncratic noise in dividend growth σD 0.1
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Table 4: Simulation: Selected Model Moments

The table reports a list of model moments and their comparison with U.S. data. The model is simulated at a
monthly frequency (dt=1/12) and simulated data are then aggregated to an annual frequency. All the moments
in the first panel are on an annual basis. ∆c denotes log consumption growth rate, ∆d log dividend growth
rate, pd log price-dividend ratio, ret log return on the dividend claim, and rft yield on one-year riskless bond. All
the moments in the second panel are on a monthly basis, but the two variables V IXt (risk-neutral log equity
return volatility index) and imp volt (Black’76 implied volatility for one-month ATM VIX option) are themselves
annualized.

Model U.S. Data Data Source

E[∆c] 2.91 1.80 BY2004
σ(∆c) 3.06 2.93 BY2004
AC1(∆c) 0.25 0.49 BY2004

E[∆d] 7.99 4.61 CRSP
σ(∆d) 11.58 11.49 BY2004
AC1(∆d) 0.23 0.21 BY2004

E[exp(pd)] 28.08 26.56 BY2004
σ(pd) 9.10 29.00 BY2004
AC1(pd) 0.03 0.81 BY2004

E[ret − r
f
t ] 8.83 8.33 Ken French

σ(ret ) 17.75 18.31 CRSP

E[rft ] 1.17 0.86 BY2004

σ(rft ) 2.87 0.97 BY2004

E[V IXt] 19.46 19.28 CBOE
σ(V IXt) 7.57 7.42 CBOE
AC1(V IXt) 0.80 0.84 CBOE

E[imp volt] 71.83 68.80 CBOE
σ(imp volt) 12.74 14.30 CBOE
AC1(imp volt) 0.49 0.27 CBOE

corr(V IXt, imp volt) 0.34 0.48 CBOE
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Table 5: Simulation: VIX Futures Returns

This table reports descriptive statistics of the model simulated VIX futures returns.
R1 is the daily average arithmetic constant-maturity return and R2 is the daily
average logarithmic constant-maturity return, Std is the standard deviation of daily
logarithmic constant-maturity returns. Data moments are from Eraker and Wu
(2017). All numbers are in percentages.

Maturity R1 R2 Std

Model

1 month -0.10 -0.18 3.71
2 month -0.09 -0.14 3.06
3 month -0.08 -0.12 2.65
4 month -0.07 -0.10 2.33
5 month -0.06 -0.08 2.07

Data

1 month -0.12 -0.20 3.98
2 month -0.07 -0.11 3.00
3 month -0.01 -0.04 2.47
4 month -0.03 -0.05 2.21
5 month -0.01 -0.03 2.01
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Table 6: Simulation: Average VIX Option Implied Volatilities (I)

This table reports the model simulated average VIX option Black’76 (annualized) implied volatilities in percent-
ages. Here, implied volatilities are reported across the option’s moneyness, i.e., normalized strike. For example,
the combination of 6-month and 120% means the option in consideration has a maturity of 6 month and a strike
that is equal to 120% of its underlying asset price, i.e., the 6-month VIX futures price.

80% 90% 100% 110% 120% 150% 200%

Implied Volatility

1 month 58.51 64.39 71.83 79.51 87.53 109.47 132.06
2 month 54.01 61.32 68.52 75.09 81.09 93.99 104.28
3 month 52.70 59.83 66.34 72.05 76.74 85.62 90.76
4 month 52.02 58.73 64.57 69.44 73.23 79.64 82.07
5 month 51.55 57.71 62.95 67.09 70.18 74.92 75.75
6 month 51.11 56.71 61.40 64.94 67.48 71.04 70.83
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Table 7: Simulation: Average VIX Option Implied Volatilities (II)

The table reports the model simulated average implied Black ’76 volatilities for VIX
options by maturity and strike.

Maturity (months)

1 2 3 4 5 6
strike
12 0.69 0.61 0.58 0.57 0.56 0.56
14 0.63 0.54 0.50 0.48 0.47 0.47
16 0.71 0.62 0.57 0.53 0.51 0.50
18 0.79 0.69 0.64 0.60 0.58 0.55
20 0.87 0.77 0.71 0.67 0.63 0.60
22 0.96 0.84 0.76 0.71 0.68 0.64
24 1.04 0.89 0.81 0.75 0.71 0.67
26 1.11 0.93 0.84 0.78 0.73 0.69
28 1.16 0.97 0.87 0.80 0.75 0.71
30 1.21 0.99 0.89 0.81 0.76 0.72
32 1.24 1.01 0.90 0.82 0.77 0.72
34 1.27 1.03 0.91 0.83 0.77 0.73
36 1.30 1.04 0.91 0.83 0.77 0.73
38 1.32 1.05 0.92 0.83 0.77 0.72
40 1.34 1.06 0.92 0.83 0.77 0.72
42 1.35 1.06 0.92 0.83 0.77 0.72
44 1.36 1.06 0.92 0.83 0.77 0.71
46 1.37 1.06 0.91 0.82 0.76 0.71
48 1.37 1.06 0.91 0.82 0.75 0.70
50 1.38 1.06 0.91 0.81 0.75 0.70
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Table 8: Simulation: VIX Option Returns

The table reports model moments of returns on holding VIX options, respectively for puts and calls, for ITM,
ATM and OTM and for maturities of one and six months. For each maturity, in the first rows are mean returns; in
the second rows are standard deviations of returns; in the third rows are Sharpe ratios; in the fourth and fifth rows
are respectively skewness and kurtosis of returns. All numbers, except Sharpe ratios, are simply based on holding
period total returns. Sharpe ratios are annualized. ITM and OTM respectively stands for 15% in-the-money and
15% out-the-money.

CALLS PUTS

ITM ATM OTM ITM ATM OTM

One month maturity
mean -0.14 -0.24 -0.35 0.05 0.07 0.17
std 1.22 2.09 3.09 0.69 1.11 2.89
Sharpe -0.39 -0.39 -0.40 0.24 0.22 0.20
skew 4.13 6.54 9.41 0.06 0.77 4.07
kurt 33.31 68.43 127.73 2.41 2.93 28.57

Six month maturity
mean -0.45 -0.52 -0.58 0.15 0.16 0.18
std 1.25 1.42 1.52 0.66 0.84 1.23
Sharpe -0.52 -0.53 -0.54 0.30 0.26 0.19
skew 3.46 4.18 4.96 -0.48 -0.06 0.57
kurt 17.81 24.51 33.28 2.26 1.85 1.98

79


