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Abstract

Net-zero portfolios (NZP), which aim to reduce carbon footprint exposure to zero by a
target date, are becoming a popular vehicle to align investors’ incentives with climate
scenarios. We characterize the decision and timing to divest companies from NZP
using a novel forward-looking measure, distance-to-exit (DTE), which calculates the
distance, in years, until a company gets excluded from NZP. Companies with greater
DTE values have higher valuation ratios and lower expected returns, consistent with
the idea that DTE captures carbon-transition risk. The effect is stronger when climate
pressure intensifies, and it is robust to various specification choices.

∗We thank Nabeel Abdoula, Yakov Amihud, Juan Antolin-Diaz, Patrick Bolton, Iancu Daramus, Gavyn
Davies, Asaf Manela, and seminar participants at Banque de France, Fulcrum Asset Management, HEC
Lausanne, HEC Paris, IESEG, Imperial College, Korea University, Luohan Academy, Reichman Uni-
versity, UBS, University of Michigan, and University of Porto for helpful comments. Contact: Gino
Cenedese gino.cenedese@fulcrumasset.com; Shangqi Han shangqi.han@fulcrumasset.com; Marcin Kacper-
czyk mkacperc@ic.ac.uk.

mailto:gino.cenedese@fulcrumasset.com
mailto:shangqi.han@fulcrumasset.com
mailto:mkacperc@ic.ac.uk


1 Introduction

The growing concerns about climate change motivate the need for a transition away from

fossil fuels to renewable energy. The resulting uncertainty about the process generates risk

for companies and investors in the economy. Such transition risk embodies a wide range of

shocks, including changes in climate policy, reputational impacts, shifts in market prefer-

ences and norms, and technological innovation. The measurement and scale of transition risk

are some of the key questions tackled by the literature on climate finance. Two approaches

have gained the most popularity in the literature. The first one (e.g., Bolton and Kacper-

czyk, 2022b) utilizes firm-level greenhouse gas data to quantify exposures to transition risk

based on the idea that the social planner aims to achieve net-zero emissions in the future.

In this approach, transition risk exposures are proportional to the size of expected decar-

bonization efforts, measured by either levels or changes in carbon emissions. The second

approach (e.g., Kölbel et al., 2022; Sautner et al., 2023) uses textual analysis to measure

exposure to transition risk based on regulatory disclosures or corporate communication of

decarbonization plans. The benefit of the first approach is its direct quantitative link to a

specific objective function, net-zero emissions, whereas the advantage of the second approach

is its forward-looking nature. However, to date, there is no approach that would integrate

the two economic ideas into a single transition risk metric. In this paper, we propose a

novel framework for measuring transition risk that combines the scientific social objective

to decarbonize the economy with the forward-looking elements of risk and examine whether

such measures are priced in the cross-section of global stocks.

The starting point for building our measures of transition risk is the concept of net-

zero portfolios (e.g., Bolton et al., 2022). Net-zero portfolios (NZP) aim to reduce carbon

footprint over time, typically until 2050, by mimicking scientific paths of decarbonization for

the global economy. The economic idea behind them is to reward companies that undertake

emissions reduction, by including such companies in NZP, and to penalize companies that

are behind the decarbonization curve, by excluding them from NZP. Their popularity among

institutional investors has been rapidly growing, with more than $130 trillion of assets under
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management currently covered by various initiatives.1 The NZP initiative has also shaped

discussions surrounding sustainable finance, as is the case for the EU Low-Carbon Benchmark

Regulation, which establishes uniform rules for low-carbon investment benchmark indexes

and sets their required decarbonization trajectories.2

Important in the NZP framework are scientific decarbonization paths that imply the

dynamic carbon budget (in terms of their portfolio holdings’ carbon footprint) that investors

can allocate to their portfolio holdings every year. Given this budget, investors follow specific

hierarchies of firms in terms of their efforts to decarbonize, and decide which stocks to select

for their portfolios. Companies that do not fit within the budget of the portfolio are removed

from NZP. As the budget gets progressively tighter, companies are more likely to exit NZP

unless they change their own emissions or other attributes that make investors decide about

which assets to hold. Companies for which the exclusion threat is greater face more pressure.

We measure such exposures using the distance in years until the expected exclusion from

the NZP takes place, and define them as distance-to-exit (DTE). We argue that DTE are

forward-looking measures of carbon-transition risk implied by investor preferences, and thus

investors should require compensation for bearing such risk. Moreover, given the economic

importance of the net-zero movement, such pricing effects could be sizable.

There are at least three channels through which the pricing effect can operate. First,

divestment by a significant fraction of investors can reduce risk sharing, and thus affect

equilibrium returns (e.g., Merton, 1987). Second, given that asset prices discount future

portfolio decisions, any expectation of future divestment could also affect prices. Finally,

through net-zero portfolios, investors can communicate expectations of future divestment to

corporates, and thus allow corporates to adjust their emissions to avoid potential penalties.

With the expectation of a meaningful adjustment of emissions, investors would reprice their

holdings. Notably, this last communication channel uncovers a new insight, namely, NZP

can be modes of both divestment and engagement. In addition, across these three channels,

an important economic force is the competition effect among companies to stay in NZP,

which injects an element of uncertainty into prices.

1See, for example, https://www.netzeroassetmanagers.org/; https://www.unepfi.org/

net-zero-alliance/; and https://www.unepfi.org/net-zero-banking/.
2See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R2089.
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In our empirical analyses, we consider various implementations of DTE. Our first set of

DTE assumes constant-rate decarbonization paths. In this setting, investors, at each point

in time, decarbonize their portfolios to near-zero emissions by 2050, and thus reduce their

carbon budget at a constant rate, subject to not exceeding the total cumulative budget up

to 2050. Next, given the budget, investors select stocks for their portfolios using the fol-

lowing three decision schemes. In the first one, they use companies’ current total emissions;

in the second one, their predicted total emissions; and in the third one, their ambition to

decarbonize. The last measure is expressed as a composite, Ambition Score, metric inte-

grating three inputs: (1) current and past emission levels; (2) current and past emission

intensities; and (3) forward-looking decarbonization plans, including decarbonization com-

mitments, green innovation, green governance, or greenwashing incentives. For each of the

three sorting variables, we also obtain industry-adjusted counterparts, which, in total, adds

up to six different DTE.

Next, we study the main determinants of DTE using a large panel of global firms with

emissions and other firm characteristics, sampled over the 2005-2021 period. All DTE are

negatively correlated with firm emissions, book leverage, and monthly stock return volatility,

consistent with the hypothesis that DTE captures equity risk. DTE are also negatively

related to stock market capitalization and dollar trading volume, but the correlations here

get weaker for DTE based on Ambition Score. In turn, all DTE are positively related to

firms’ measures of property, plant, and equipment and firm age. When it comes to other

firm characteristics the results are more mixed. For example, DTE based on emissions

are positively related to firms’ ROE, investment-to-assets, and past stock returns, but the

correlation is negative for DTE based on Ambition Score.

One concern when implementing the NZP framework is a potential for the portfolio to

drift away from the market portfolio. We show that such drift in our sample is relatively

modest. Even though, as expected, we find that the dynamics of NZP generates an uneven

exclusion of certain sectors and stocks, the basic properties of the portfolios relative to the

market portfolio are not very different. This finding is particularly true for DTE portfolios

that account for industry-fixed effects. We also do not find any strong evidence that NZP

underweight large companies and thus they are unlikely to bear significant transaction costs
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and illiquidity risk.

Next, we study the question of whether DTE are priced by investors in the stock market.

We first relate DTE to next month’s stock returns. Our empirical specification is based on a

pooled cross-sectional regression framework of Bolton and Kacperczyk (2021), and includes a

host of firm-level characteristics, as well as country-, industry-, and time-fixed effects. Across

all specifications, we find a statistically strong negative association between DTE and stock

returns. The results are economically large: a one-standard-deviation increase in DTE for

a given cross-section of firms is associated with an approximate 3.5 − 4.5 percentage-point

reduction in next month’s annualized stock returns. We further find that while the predictive

power of DTE decreases into the future, it remains considerably significant, even for one-

year-ahead stock returns. These results support the hypothesis that companies with lower

DTE are more risky and investors require higher compensation from them.

A common challenge with the interpretation of stock returns data is the distinction

between expected and realized returns. In line with previous studies, we provide additional

evidence using valuation regressions. The benefit of using this approach is that valuation

ratios are less noisy than stock returns. Further, we can control for future cash flows, and

thus the interpretation of our results is more aligned with the pure discount rate effect. In

our tests, we consider three measures of firm value, price-to-earnings, price-to-book, and

price-to-sales. We find a strong positive correlation between DTE and almost all measures

of values. These results are consistent with the view that companies subject to stronger NZP

pressure are priced with lower multiples than those for which the pressure is lesser.

In another test, we examine whether the DTE premia also accrue on the extensive margin,

that is, whether companies which never exit NZP are priced differently than those that do

exit at any point up to and including 2050. We find a very strong statistical difference

in stock returns between the two groups of stocks, for all measures of exit. The results

are also economically large. Companies that exit have higher annualized returns by about

3.5 − 5 percentage points. Thus, the pressure from institutional investors matters both at

an intensive and extensive margin.

Our findings strongly support the risk-based explanation of the cross-sectional variation

in stock returns. Given the nature of our exit measures, the most natural interpretation is
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that of transition risk. This interpretation is further supported by our next test in which we

relate the size of the exit premium to a shift in transition risk due to Paris Agreement. This

shock has been previously applied in studies of climate risk. Using our regression framework,

we find that the cross-sectional premium in stock returns roughly doubles when we measure

risk premia using either stock returns or price-to-earnings ratios. The results are statistically

weaker for exit measures based on Ambition Score. Notably, most results are statistically

significant even before 2015. Another finding that supports the transition-risk interpretation

is the strong correlation between DTEs and other proxies of transition risk, such as emission

levels, their growth, and Ambition Score. A natural question to ask is to what extent DTE

capture the same variation as other climate-related measures. We answer this question using

our basic regression model with additional controls for such measures. As expected, we find

that some of the variation in DTE can be explained by the other variables. Nonetheless,

the coefficients of DTE retain their sign and statistical significance. These results paint two

important conclusions. First, DTE carry independent stock return variation. Second, the

explanatory power of DTE stems from both the signals on which we sort stocks and the

carbon budget that moderates the inclusion of stocks into NZP.

In the last part of the paper, we provide additional robustness to our findings. First, our

results hold when we exclude scope 3 emissions, which are sometimes regarded as more noisy.

Second, the effect of DTE on stock returns interacts with the firm-level decision to disclose

their climate data directly, but if anything, the decision to disclose emissions amplifies rather

than mitigates the size of the return premium. Third, our results are robust to different

choices of decarbonization paths. Here, we consider a number of possibilities, such as: (a)

the budget is kept constant for some time and then investors decarbonize their portfolios’

footprint at a constant, but faster rate; (b) investors decarbonize their portfolios at a faster

(slower) rate for the first half of the remaining period and then at a slower (faster) rate

for the second half; (c) investors follow a more sophisticated science-based decarbonization

path (of Andrew (2020)). We find very similar magnitudes of the return differences among

firms across all the paths. Finally, we consider regressions excluding industry-fixed effects

and stock characteristics related to firm size, and find that our results are not significantly

affected by such choices. Overall, our results indicate a strong and robust relation between
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firms’ DTEs and their equity values, consistent with the view that NZP are a source of

transition risk for companies with different degrees of ambition to decarbonize.

Our paper is related to various strands of a recent literature on climate finance. First,

we extend the literature on firm-level transition risk (e.g., Bolton and Kacperczyk, 2021,

2022b; Sautner et al., 2023) by proposing novel measures of such risk. In contrast to pre-

vious studies that either solely rely on the past emission data or use soft textual measures

subjected to reporting biases, our DTE measures integrate both past and future climate-

related information, and they are tightly linked to scientific evidence through the concept

of decarbonization paths. Second, our paper parallels recent literature on NZP. The closest

papers to ours are Bolton et al. (2022), which introduces the specifics of NZP, and Jondeau

et al. (2021) and Cheng et al. (2022), which apply a similar methodology and extend it to

corporate and sovereign bonds, respectively. We extend the basic framework of these studies

in two critical dimensions: (a) by considering various paths of decarbonization, and (b) by

using different signals that investors can use to sort companies into portfolios. Most impor-

tant, we use the NZP framework to derive firm-specific measures of transition risk and show

that they are related to the cross-section of stock returns and their equity valuation ratios.

Third, our paper relates to studies emphasizing the role of institutional investors for

transition risk (e.g., Engle et al., 2020; Krueger et al., 2020; Pedersen et al., 2021; Pastor

et al., 2023; Atta-Darkua et al., 2023). In contrast to these studies, we focus on the specific

investment principle that institutional investors apply, net-zero portfolios, and link the re-

sulting pressure to firm values. In this regard, our paper is the first one to formally integrate

institutional investors’ pressure in measures of transition risk. Fourth, our paper is related

to studies that discuss the importance of institutional investors in the context of divestment

(e.g., Heinkel et al., 2001; Andersson et al., 2016; De Angelis et al., 2022; Berk and van Bins-

bergen, 2022; Ceccarelli et al., 2023) and firm engagement (e.g., Gillan and Starks, 2000;

Broccardo et al., 2022). These studies aim to show the different ways in which institutional

investors can affect firm value and its cost of capital. Notably, they typically focus on one

specific channel, or, in some ways, tend to assess the relative importance of divestment vs.

engagement. Our study is different in at least two aspects. First, we study the economic

importance of both expected and observed divestment, which means that our framework does
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not necessarily require significant exclusionary forces. Second, we argue that the threat of

future divestment can be a form of engagement with firms to decarbonize their operations

if they want to stay in the portfolio.

Finally, at a more general level, our paper can be interpreted as a new approach to testing

duration-based asset pricing models (e.g., Lettau and Wachter (2007)). Different than the

literature on the topic that resorts to measures based on time-series resolution of cash-flow

risks, we show the timing differences that are directly built into discount rates through the

DTE measures. The advantage of our approach is that it does not rely on specific assets,

such as dividend strips, to generate differences in timing of risks; instead, it relies on the

specific characteristic of stocks that are time dependent (DTE).

The rest of the paper proceeds as follows. In Section 2, we describe the details of our

methodology to construct DTE, and summarize the data. Section 3 presents details on the

empirical properties of DTEs. Section 4 reports results from the regression models relating

DTE to stock returns and valuation ratios, and discusses various extensions and robustness.

Section 5 concludes.

2 Methodology & Data

In this section, we describe the methodology and the data we use to construct DTE

measures. The starting foundation for DTE is the concept of net-zero portfolios (NZP),

adapted to our framework following the work of Bolton et al. (2022). Important in this

concept are two elements: a) dynamic carbon budget, applied by investors in their portfolio

decisions, which is informed by scientific projections about climate scenarios, and determines

the maximum amount of emissions NZP can be exposed to at each point in time until

the final period, and b) the rule by which investors select companies into NZP. Next, we

describe the details to calculate DTE. Finally, we provide summary statistics related to

the main variables we use in our analyses. Our data set covers a large sample of global

firms with available historical and forward-looking carbon emissions metrics and other firm

characteristics over the 2005-2020 period.
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2.1 Net-Zero Portfolios

Net-zero portfolios (NZP) aim to reduce carbon footprint over time, typically until 2050,

by mimicking scientific paths of decarbonization for the global economy. Even though NZP

by themselves do not guarantee the decarbonization of the global economy, they aim to

provide incentives for the companies to do so. Specifically, the idea is to reward companies

that undertake emissions reduction, by including such companies in NZP, and to penalize

companies that are behind the decarbonization curve, by excluding them from NZP.

2.1.1 Dynamic Carbon Budget

The starting point for constructing the portfolio budget is the global carbon budget.

The global budget is defined as the amount of aggregate emissions that can be maximally

produced to adhere to scientifically determined climate scenarios informed by temperature

changes. In theory, many carbon budgets are possible, as long as different scenarios are being

considered; in practice, some scenarios are more popular than others. In our paper, we focus

on one such scenario, in which the Intergovernmental Panel on Climate Change (IPCC), the

leading provider of climate data, estimates that in order to limit the global temperature rise

to below 1.5°C compared to pre-industrial levels, with 83% probability, one would need to

limit global emissions to 300 GtCO2 as of the beginning of 2020 (IPCC, 2021). To get a

better sense of this number the following thought exercise can be useful. The Global Carbon

Project, a consortium of scientists, estimates that global emissions in 2020 reached 39.3

GtCO2;3 which means that the remaining budget as of beginning of 2021 is 260.7 GtCO2.

Assuming a scenario in which emissions stay constant into the near future, the remaining

budget would be depleted within 6.6 years (260.7/39.3). These findings underscore the

urgency of addressing emissions reduction to sustainably manage the finite carbon budget

and to attain critical climate objectives.

Given the global carbon budget, we can construct the portfolio carbon budget as follows.

First, we define the investable universe, which includes stocks on all publicly traded firms in

the Trucost data set, our source of emissions data. Second, we sum up scope 1–3 emissions

3See https://globalcarbonbudget.org/.

8

https://globalcarbonbudget.org/


from all such firms in a given year (e.g., 24.8 GtCO2e in 2020). Third, assuming that the

rate of portfolio decarbonization is proportional to the rate of global decarbonization, the

cumulative portfolio budget is equal to the portfolio emissions in 2020 times the number of

6.6 years left to exhaust the world cumulative budget as of that date. This procedure yields

an estimate of cumulative portfolio budget of 163.7 GtCO2e.

Having pinned down the size of the total carbon budget for NZP, the next step is to decide

the pathway along which investors would decarbonize their portfolios. We consider several

different choices of such decarbonization paths: (a) investors immediately decarbonize their

portfolios’ footprint at a constant rate, (b) the budget is kept constant for some time and then

investors decarbonize their portfolios’ footprint at a constant, but faster rate, (c) investors

decarbonize their portfolios at a faster (slower) rate for the first half of the remaining period

and then at a slower (faster) rate for the second half, (d) investors follow a more sophisticated

science-based decarbonization path.

Figure 1 shows how these different decarbonization paths evolve over time, when choosing

starting dates between 2006 and 2020. The green pathways, denoted as Const, assume that

investors follow a constant reduction rate from the first year, such that the terminal emissions

in 2050 are smaller than 0.1 GtCO2e.4 The light blue pathways, ZeroConst, assume that

investors delay the decarbonization process of their portfolios for a while by applying constant

emissions, but then they apply faster, constant reduction rates. The yellow pathways, SF ,

assume that investors’ carbon budget switches from a slow reduction rate of 1% to a faster

reduction rate that is not larger than 30% (selected based on feasibility) after several years.

The dark blue pathways, FS, switch from a faster reduction rate to a slow reduction rate of

1%. Here, the faster rate is applied to the maximum number of years possible to make the

2050 emission budget as low as possible while making sure that the total cumulative budget

is fully used. Note that, for the cohort starting in 2006, the terminal 2050 emission budget

can be as high as 12 GtCO2e. The orange pathways, RAEM , follow the emission mitigation

pathway of Andrew (2020)5 Here, emissions can increase initially and then decrease.

To provide a visual illustration of the portfolio budget’s construction, Figure 2 zooms

4Notably, the immediate reduction in portfolio emissions does not lead to the depletion of the global
budget.

5The mitigation curves were adapted from Raupach et al. (2014) by Andrew (2020).
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in on a snapshot of decarbonization pathways for the cohort starting in 2020. Specifically,

global emissions in 2020 amount to 39.3 GtCO2e, and the corresponding annual carbon

footprint of the investable universe is 24.8 GtCO2e. Using the proportionality rule, the

remaining global emissions budget of 260.3 GtCO2e translates into a cumulative portfolio

budget of 163.7 GtCO2e. This proportionality rule applies not only to total emissions but

also works for all individual yearly carbon budgets. This procedure gives rise to the entire

portfolio decarbonization pathways, as is shown in the right panel of Figure 2. For example,

if we followed the green pathway, Const, from 2020, global emissions would need to drop to

32.2 GtCO2e, and, correspondingly, our net-zero portfolio would allow for a carbon footprint

of 20.3 GtCO2e in 2021.

As a final step to obtaining NZP, we select companies, such that their total emissions

jointly do not exceed the yearly emission budget.

2.1.2 NZP Selection Rule

In this section, we describe the rules by which investors select companies into NZP.

Our broad principle is that companies with greater decarbonization prospects should be

given preference. We consider three different ranking schemes of such prospects. First,

we use companies’ current total emissions, following the idea that such emissions are the

best predictor of future decarbonization efforts. Second, we sort companies based on their

predicted total emissions. Here, the basic principle is that decarbonization may take time,

so what matters is where companies will be later on with their efforts, and not necessarily

where they are today. Third, we select companies according to their combined efforts to

decarbonize their activities, measured by our novel composite, the Ambition Score. For the

first two schemes, we consider measures based on unconditional sorts, as well as measures

sorting within a given 4-digit Global Industry Classification Standard industry (GICS-4)

cluster. In turn, the third scheme is always industry-neutral; nonetheless, we distinguish

between carbon budgets based on current emissions and those based on forecasted emissions.

All the measures utilize a wide range of data, starting with the emissions data, which we

obtain from S&P Trucost, and then following with forward-looking climate-related indicators

from the following databases: Refinitiv ESG, CDP, and Orbis Intellectual Property.
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Rule 1: Historical Carbon Emissions. Our first selection rule is based on the sum of all

firm-level emissions. Companies with lower total emissions are preferred to those, whose total

emissions are higher. The construction of emissions data starts with all global firms in the

S&P Trucost Environmental Data reported yearly between 2005 and 2020. Trucost reports

firm-level absolute greenhouse gas emissions in tons of carbon dioxide equivalent (tCO2e)

for scope 1, 2, and 3 upstream emissions.6 According to the Greenhouse Gas Protocol,

scope 1 emissions are emissions directly from sources that are owned or controlled by the

company, scope 2 emissions refer to emissions generated by a company consuming purchased

electricity, heat, or steam, and scope 3 emissions are indirect emissions produced by the

company’s value chain but occur from sources not owned or controlled by the company.

Rule 2: Forecasted Emissions. Our second scheme classifies companies based on the

levels of their forecasted emissions. This means that for a given dynamic budget path,

investors estimate total emissions for each point in time along the path taking a given decar-

bonization cohort as a starting point for making predictions. Since creating a sophisticated

predictability framework is beyond the scope of this study, we rely on a fairly simple pro-

cedure to form predictions, a weighted average between pre-announced, self-reported firm

commitments to decarbonize their efforts and past emissions trends. In the Appendix, we

describe the details of our data and methods to source commitments data, and then present

our method to incorporate trend data.

The final forecasted emissions pathway is a weighted average of the decarbonization

target-based path and the emissions trend path. Following the target credibility framework

set out by the Glasgow Financial Alliance for Net Zero (GFANZ, 2023), we assign a 75%

weight to a target-based path if a firm meets two criteria: (1) its targets are approved by

the Science Based Targets initiative (SBTi), and (2) has targets for both short-term and

medium-to-long-term horizon. In the case in which a firm only meets one of the above two

criteria, we assign a 50% weight to the target-based path. We only assign a 25% weight to

the target-based path if a firm only has medium-to-long-term targets that are not approved

by SBTi. For all these three cases, we assign the rest of the weights to the trend path.

6To maintain consistency in our data across years, we use scope 3 emissions coming from upstream
activities, as the emissions from downstream activities are only available from 2017 onwards.
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Finally, if a firm only has short-term targets, or does not have targets at all, our forecasts

rely fully on the trend path.

Rule 3: Ambition Score. Our third classification scheme aims to capture corporate

intention and ability to decarbonize their future activities. The basic idea is to integrate

information from past decarbonization efforts with information that speaks to future efforts

to do so. To this end, we define a novel metric, the Ambition Score, defined as a weighted

average of the following three categories of variables: (1) historical emissions levels and

their growth rates (50%), (2) historical emissions intensities and their growth rates (25%),

and (3) forward-looking climate-related activity metrics (25%). Within each category, we

assign equal weights to individual characteristics.7 All three categories aim to predict firm-

level decarbonization outcomes. Carbon emissions levels and their growth rates are useful to

extrapolate current emissions trends into the future. Intensity-level metrics add an additional

dimension of efficiency of carbon production. Finally, forward-looking metrics summarize all

the efforts undertaken by the company that relate to the companies’ ambition to reduce

emissions.

Specifically, within the first category, we include the size and the three-year moving-

average simple growth rate of the company’s absolute carbon emissions. Within the second

category, we include the level and the three-year moving-average growth rate of the com-

panies’ carbon intensities, measured as tons of CO2 equivalent divided by the company’s

revenue in millions of dollars. Within the third category, we incorporate three aspects of de-

carbonization ambition measures: a) environmental variables from the company’s Corporate

Social Responsibility (CSR) report, b) patent variables on green and brown innovations, and

c) variables on decarbonization commitments reported in the CDP survey. In the Appendix,

we describe the details for the components forming each of the three categories.

7The weighting scheme we apply to construct the score is a choice variable and can be modified in a
very flexible way. We chose these specific weights to reflect the importance of directly observed emissions in
the prospects of decarbonization. The equal weights within each category are consistent with an uninformed
prior regarding the importance of each individual corporate action.
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2.1.3 Distance-to-Exit (DTE)

We define the distance-to-exit of a company i in year t, DTEi,t, as the number of years

a stock remains included in NZP. We consider three variants of DTE: (1) those based on

constant emissions, (2) those based on forecasted emissions, and (3) those based on Ambition

Score. The first two sets are further divided depending on whether the sorting variable, for

a given firm, is normalized by the average of its GICS-4 industry peers, or not. For the

Ambition Score, we conduct the exclusion by filling in the carbon budget using constant

emissions and forecasted emissions, respectively.

To illustrate the basic properties of different DTE, we follow the example of Apple.

Using the three climate alignment selection rules, we compute Apple’s DTE by ranking

stocks based on their climate performance and calculating the number of years its stock is

not excluded from the net-zero portfolio, as discussed in Section 2.1. This process is repeated

for every year from 2006 until 2020. We consider three sets of DTE measures: (1) those based

on constant emissions; (2) those based on forecasted emissions; and (3) those based on the

Ambition Score. The first two are further divided depending on whether the sorting variable

is industry-adjusted or not. For the Ambition Score, we conduct the exclusion by filling the

carbon budget using constant emissions and forecasted emissions, respectively. The table

below provides numerical results for the six DTE.

Estimation Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Constant Emissions
Exit Year 2025 2024 2024 2023 2021 2020 2019 2020 2020 2020 2021 2021 2022 2023 2024
DTE 18 16 15 13 10 8 6 6 5 4 4 3 3 3 3

Industry-Adjusted Constant Emissions
Exit Year 2015 2014 2016 2016 2014 2014 2014 2015 2016 2016 2017 2018 2019 2020 2021
DTE 8 6 7 6 3 2 1 1 1 0 0 0 0 0 0

Forecasted Emissions
Exit Year 2018 2012 2014 2016 2016 2016 2015 2023 2019 2020 2019 2020 2021 2022 2023
DTE 11 4 5 6 5 4 2 9 4 4 2 2 2 2 2

Industry-Adjusted Forecasted Emissions
Exit Year 2013 2010 2011 2013 2013 2013 2013 2015 2016 2016 2017 2018 2019 2020 2021
DTE 6 2 2 3 2 1 0 1 1 0 0 0 0 0 0

Ambition Score Cum Constant Emissions
Exit Year 2013 2016 2016 2019 2014 2014 2014 2015 2016 2016 2018 2018 2019 2020 2021
DTE 6 8 7 9 3 2 1 1 1 0 1 0 0 0 0

Ambition Score Cum Forecasted Emissions
Exit Year 2011 2013 2014 2017 2014 2013 2013 2015 2016 2016 2018 2018 2019 2020 2021
DTE 4 5 5 7 3 1 0 1 1 0 1 0 0 0 0

In the first panel, where we sort companies on their yearly emissions, Apple’s DTE is

decreasing from 2006 to 2020. This could reflect both a tightening of the portfolio budget

or a worsening of the company’s decarbonization efforts, as measured by Apple’s carbon
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emissions. Note that, by construction, it takes the smallest number of excluded firms to

meet the yearly portfolio budget when firms are ranked by their emissions levels. Consistent

with that intuition, in the second panel, Apple’s DTE decreases when we rank companies

by industry-adjusted emissions. At the same time, this finding could also mean that Apple

is underperforming its peers in the same industry in terms of its emissions levels. The

third panel shows Apple’s DTE, based on its forecasted emissions. Compared to the first

panel, we observe mostly lowerDTE, except for 2013. When we constructDTE based on the

Ambition Score, we observe values that are similar to the cases based on forecasted emissions,

but lower than values based on constant emissions, suggesting that Apple is less ambitious

in its decarbonization efforts when taking into account forward-looking information.

For the rest of the paper, we apply the same procedure for all other stocks in our data,

which translates into a large panel of DTE.

2.2 Financial Data

Our firm-level financial data source is S&P Global Compustat. The dependent variables

in our regressions are RETi,t, which is the monthly return of an individual stock i in month t.

To calculate returns, we follow the approach outlined in Chaieb et al. (2021), with necessary

adjustments. We focus on securities categorized as common or ordinary shares (tpci = ’0’) in

Compustat. Total return indexes are created by combining variables such as prices (prccm),

adjustment factors (ajexdm), quotation units (qunit), exchange rates (exratm), and total

return factors (trfm). We apply -30% delisting returns when delisting is performance related

(based on the delisting reasons dlrsn), following Shumway (1997).

We define the book value of common equity, that is, as a difference between the book

value of stockholder’s equity, adjusted for tax effects, and the book value of preferred stock.8

To construct the book value per share, we follow Asness and Frazzini (2013), and adjust

book value for corporate actions between fiscal year-end and the date of portfolio formation.

To construct price-to-book ration we divide current price by book value per share (both

measured in local currency). The price-to-book ratio is updated monthly. Price-to-sales and

price-to-earnings are built in an analogous way. LOGMBi,t, is the natural logarithm of the

8See Bali et al. (2016), page 178.
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price-to-book ration. Similarly, we take natural logarithms of price-to-earnings, LOGPEi,t,

and price-to-sales ratio, LOGPSi,t.

Further, we define our control variables that we use in our cross-sectional regressions.

Market capitalization is computed as a product of number of shares outstanding and stock

prices (prccm). For North-American stocks, we use the last reported shares outstanding

on the last trading day of the month (cshom), while for non-North American stocks, we

use current shares outstanding (cshoc). LOGMKTCAPi,t is the natural logarithm of firm

i’s market capitalization at time t; LEV ERAGEi,t, which is the ratio of debt to book

value of assets; momentum, MOMi,t, which is given by the average of the most recent 12

months’ returns on stock i, leading up to and including month t–1; capital expenditures,

INV EST/ASSETSi,t, which we measure as the firm’s capital expenditures divided by the

book value of its assets; LOGPPEi,t, which is given by the natural logarithm, of the firm’s

property, plant, and equipment; the firm’s earnings performance, ROEi,t, which is given by

the ratio of firm i’s net yearly income divided by the value of its equity; the firm’s total

risk, AGEi,t, which is the firm age in number of years, V OLATi,t, which is the standard

deviation of returns based on the past 12 monthly returns; SALESGRi,t, which is the annual

growth rate in firm sales. To mitigate the impact of outliers, we winsorize LEV ERAGE,

INV EST/ASSETS, ROE, MOM , V OLAT , and SALESGR at the 2.5% level.

2.3 Summary Statistics

In this section, we summarize the variables used in our analysis based on the pooled

sample of companies observed over the period 2006-2020. We report basic statistics for each

variable of interest, including their means, medians, 25th and 75th percentiles, and standard

deviations. We present the information in Table 1.

In Panel A, we show information for emissions-related metrics. We present emission

levels, their growth rates, intensities, and the growth rates thereof. Emissions are measured

as a sum of scope 1, scope 2, and upstream scope 3 emissions, for which information is

complete for the entire period of our analysis. Consistent with previous work, we find that

emission levels are highly right skewed. While the mean value of firm-level emissions equals

approximately 3 million tons of CO2e, the corresponding median is about 250,000. We also
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find that emissions are highly dispersed across firms, as indicated by a high value of standard

deviation, which is almost 5 times larger than the mean value of emissions. Finally, both

levels and emissions intensities exhibit, on average, a positive growth rate on an annual basis

even though the values are highly dispersed across firms.

In Panel B, we report summary statistics for firm-level Ambition Score and its sub-

components. Summary statistics for the components are presented on an industry-adjusted

basis and after being normalized. We note that different components exhibit different degree

of cross-firm-level variation. The most dispersed metrics are those related to the level and in-

tensity of emissions. In turn, variables related to forward-looking information are distributed

in a fairly comparable way. Notably, unlike emission variables that are right skewed, most

of the other metrics are left skewed, supporting the view that forward-looking information

is generally less available.

In Panel C, we show summary statistics for the DTE that are derived using different

metrics of sorting variables. Since some of the DTE measures are based on forecasted

emissions we also report summary statistics of the emission forecasts one year and five years

ahead. We observe some variation in the distribution of the different DTE. The metrics

based on constant emissions have greater values, with an average of about 23.6. In turn,

DTE based on Ambition Scores are significantly smaller with the average values of about

13. These differences indicate that companies, on average, are less ambitious in the way how

they carry their decarbonization efforts when we take into consideration aspects that include

not only hard emission data but also soft forward-looking metrics.

Finally, in Panel D, we summarize information on firm-level variables that enter our

regression models in Section 4. The distribution of these variables is consistent with previous

studies on global carbon-transition risk (e.g., Bolton and Kacperczyk, 2022b).

3 The Anatomy of DTE

In this section, we characterize the main properties of DTE. First, we show its relation

to other measures of climate risk. Next, we study the time-series variation in DTE. Sub-

sequently, we analyze the main determinants of DTE using pooled regression framework.
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Finally, we provide evidence on the properties of NZP portfolios built on different DTEs in

terms of their industry weighting and characteristic exposures.

3.1 Correlation Structure and Time-Series Variation of DTE

We begin by tabulating some of the properties of DTE. First, we relate different versions

ofDTE to each other and two main ingredients that underlie it: total emissions and Ambition

Scores. Next, we show the time-series distributions of DTE. Both are reported in Table 2

below.

In Panel A, we report the correlation structure across various DTE and measures on

which they are based.9 We find that all DTE are positively correlated with each other but

the correlations are far from perfect. In general, measures based on emission metrics are

more correlated with each other but less correlated with measures based on Ambition Score.

We also find that DTE are negatively correlated both with emission measures and with

ambition scores but the correlations are fairly modest, especially for ambition scores, which

suggests that DTE do not capture exactly same information as the raw metric from which

they are derived. The likely driver of the difference is the dynamic carbon budget constraint

that induces additional variation in DTE.

In Panel B, we illustrate the time-series variation of DTE. As expected, DTE decrease

over time, consistent with the shrinking carbon budget and greater decarbonization pressure.

At the same time, the declining values of DTE also indicate that companies are not able to

reduce their emissions at the pace required by the carbon budget. We also note that DTE

decrease more for metrics based on hard emission data as can be seen by comparing the

average values between 2006 and 2020 and they decrease less for measures based on ambition

scores. This pattern suggests that companies undertake additional measures beyond their

emission adjustments to reduce the institutional pressure, even though those DTE are still

relatively smaller than those based on hard data.

9Table IA.1 reports the correlation structure across additional DTEs constructed under different decar-
bonization pathways.
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3.2 Determinants of DTE

We further provide additional information on DTE by relating its variation to various

corporate characteristics. Formally, we estimate the following regression model:

DTEi,t = a0 + a1Controlsi,t−1 + µt + εi,t, (1)

where DTEi ,t is a generic term standing for various measures of distance-to-exit for firm i

at time t constructed using our earlier framework. The vector of firm-level controls includes

the firm-specific variables LOGCO2, LOGMKTCAP, LOGASSETS, LOGMB, LEVERAGE,

MOM, INVEST/ASSETS, LOGPPE, VOLAT, ROE, DOLVOL, and AGE.

We estimate this cross-sectional regression model using pooled OLS. We also include

country-fixed effects, as well as year-month-fixed effects. Finally, we also include industry-

fixed effects to capture within-industry variation across firms. We double cluster standard

errors at the firm and time dimension. We present the results in Table 3. Columns 1-2

show the results for measures based on constant emissions, columns 3-4 show the results

for measures based on forecasted emissions, and columns 5-6 show the results for measures

based on Ambition Score.

We document a number of interesting regularities. First, allDTE measures are negatively

related to levels of total emissions, which reflects the fact that DTE partly reflect the

variation in emissions. Second, we find that DTE based on emissions are negatively related

to both firm assets size and market capitalization. Notably, the effect becomes much weaker

or turns positive when we relate size to DTE based on the Ambition Score. Third, across all

specifications, DTE is positively related to firm age and negatively related to firm volatility

and firm leverage. The latter result supports the view that DTE is a risk-driven metric.

Fourth, DTE is negatively related to firm trading volume, even though the result becomes

statistically insignificant when we look at DTE based on the Ambition Score. Finally, the

results for other variables, such as LOGMB, MOM , INV EST/ASSETS, and ROE are

mixed and depend on the choice of the DTE measure.
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3.3 Industry and Style Exposures of DTE Portfolios

In this section, we provide additional insights into the properties of DTE portfolios by

looking at various comparisons between DTE-based portfolios and the universe of stocks in

Trucost database. The two DTE portfolios we consider are one based on industry-adjusted

forecasted emissions and another one based on the Ambition Score incorporating future

emissions. In order to demonstrate some comparisons we focus on one snapshot of the data,

2020. Further, we consider three different investable sets: stocks with DTE ≥ 5, stocks with

DTE ≥ 15, and stocks with DTE = 30.

We begin by showing the GICS-4 market weights in our portfolios relative to those of

the Trucost universe. The results are presented in Figure 3. As a benchmark, the black

dots represent the market weights for all stocks in the Trucost universe. As is well known,

Software and Services sector is the largest sector followed by Banks and Capital Goods.

Next, we look at market weights of portfolios including companies with minimum DTE of 5,

represented by orange dots. In the left panel, we show the results for DTE portfolios based

on future emissions. We observe two following facts: most of the sector weights are not

significantly different from those of the benchmark weights. Second, we observe that certain

sectors are underweighted (Software and Services, Pharmaceuticals, Consumer Discretionary,

and Media) and others are overweighted (Insurance, Financial Services, REITs, Food, and

Marterials). These results conform to the general patterns of carbon footprints of these

industries. In the right panel, we look at DTE portfolios based on Ambition Score. The

deviations of the weights from the benchmark do not appear visibly different than in the

previous case. We further compare the industry weights for portfolios with greater DTE

values. While the deviations from the benchmark, as expected, increase slightly, there does

not seem to be a very strong tilt away of our portfolios. Overall, we conclude that our

portfolios do deviate slightly from the market weights but we do not seem to observe extreme

cases in which certain sectors are fully excluded and others are significantly overweighted.

Another dimension on which we could compare the DTE portfolios is the number of

stocks held. The primary concern is thatDTE portfolios may become less and less populated

due to tighter carbon budget and thus their properties in terms of tracking errors or risk may
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become unfavorable. We assess this dimension of our portfolios by looking at the number

of stocks held by the benchmark portfolio and various DTE variants. We show the results

from this analysis in Figure 4. Two observations are noteworthy. First, our analysis shows

that the number of stocks in the portfolio that includes companies with DTE ≥ 5 is not

visible different than that for the benchmark portfolio. This is true for both DTE portfolios.

Second, as we restrict the universe of companies towards the greater DTE values we can

see that the number of stocks in the portfolio drops, but the drop is really visible only for

the extreme portfolio with companies that survive in the portfolio in 2050. However, this

example is somewhat stylized as it ignores the possibility that companies may improve their

decarbonization profiles at the final periods of the investment horizon. At the very least, the

uncertainty around this situation is too high to argue that the NZP in 2050 would include

only a handful of stocks.

While the properties of the portfolio from the perspective of deviations from market

portfolio are naturally important, another dimension of DTE concerns their ability to de-

carbonize NZP. We explore this question next. In Figure 5, we show the results from the

analysis in which we compare the carbon footprint of portfolios defined in Figure 3 and 4

to the carbon footprint of a portfolio composed of all Trucost universe stocks. We show

that depending on a given DTE profile, NZP portfolios reduce carbon footprint anywhere

between 40% to 95%. These results are fairly impressive in conjunction with the fact that

these are well-diversified portfolios. In Figure 6, we ask the same question from the perspec-

tive of future emissions. Here, we predict emissions for 2025, 2035, and 2050 and show the

proportion of carbon footprint of DTE portfolios relative to the equivalent Trucost universe.

The results are quite consistent and show that in a 5-year period the DTE portfolios would

reduce carbon footprint by roughly 50% − 60% and the number gets significantly larger as

we go towards 2035 and 2050. Of course, by construction in 2050, the expectation is we

would decarbonize the portfolio by almost 100%.

Finally, it may be useful to assess the properties of DTE portfolios from the perspective

of factor/style exposure. This is what we show in Figure 7. Here, we look at the percentage

deviations from Trucost portfolios for the above-defined portfolios. Our style characteristics

include LOGASSETS, LEV ERAGE, LOGMB, MOM , and ROE. For comparisons, we
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also show the deviations in terms of emissions and forecasted emissions. We find that our

DTE portfolios are not significantly tilted from the benchmark on the first three charac-

teristics. Especially, the size balance is comforting as it indicates that our portfolios are

likely shielded from potential transaction cost stories due to holding small stocks. On the

other hand, we find more deviation our portfolios in terms of their momentum and ROE

properties, even though we note that the significance of the deviation is economically large

only for portfolios with the largest DTE.

Overall, we conclude that while our DTE portfolios exhibit a significant reduction of

carbon footprint they do not lead to tilts that could indicate their significant deviation from

what would represent a well-diversified and sectorally balanced portfolio.

4 DTE and Firm Values

In this section, we present our main findings on the pricing of carbon-transition risk

using our novel measures of DTE. We begin by reporting results for the measures based

on constant decarbonization paths and total emissions sorts. We then proceed to show

additional results on the specific drivers and robustness.

4.1 Empirical Specification

Our analysis of carbon-transition risk centers on the cross-sectional regression model

relating individual companies’ stock returns to measures of DTE. Following the work of

Bolton and Kacperczyk (2021, 2022b), we take a firm-characteristic-based approach along

the lines of Daniel et al. (1997). This approach is particularly well suited given the rich

cross-sectional variation in firm characteristics in our sample.10 As shown in Bolton and

Kacperczyk (2022b), the following characteristics are particularly relevant in carbon tran-

sition risk models: firm size; book-to-market; leverage; capital expenditures over assets;

property, plant, and equipment; return on equity; sales growth; firm age; firm profitability,

10The risk factor-based approach has been a popular method to measure risk premia in a single-country,
but in a fully global study, such as this one, this approach is problematic because of the difficulties in
specifying appropriate factor-mimicking portfolios for a large number of countries with limited data, and
because of cross-country comparability issues.
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as measured by return on equity (ROE); dollar volume; and a measure of, respectively, stock

price momentum and volatility. This characteristics-based approach also allows us to take

full advantage of fixed effects along time, country, and industry dimensions. Further, we can

better account for the potential dependence of residuals by using a clustering methodology.

Finally, the advantage of taking a characteristics-based approach is that we do not need to

take a stance on the underlying asset pricing model. Our aim is more limited: to provide a

comprehensive picture of the cross-sectional variation in stock-level returns due to differences

in DTE. Stated differently, our approach is to identify a company’s transition risk beta.

We begin by linking companies’ monthly stock returns to our measures of DTE and

other characteristics, all lagged by one month. This regression model reflects the long-run,

structural, firm-level impact of net-zero portfolios on stock returns. Specifically, we estimate

the following model:

RETi,t = b0 + b1DTEi,t−1 + b2Controlsi,t−1 + µt + εi,t, (2)

where RET i ,t measures the stock return of company i in month t, and DTE is a generic term

standing for various measures of distance-to-exit constructed using our earlier framework.

The vector of firm-level controls includes the firm-specific variables LOGMKTCAP, LOGMB,

LEVERAGE, MOM, INVEST/ASSETS, LOGPPE, VOLAT, ROE, DOLVOL, and AGE.

We estimate this cross-sectional regression model using pooled OLS. We also include

country-fixed effects, as well as year-month-fixed effects. Finally, we also include industry-

fixed effects to capture within-industry variation across firms. Including industry-fixed effects

is important in transition risk regressions due to significant cross-industry differences in

emissions, as indicated by Bolton and Kacperczyk (2022b). We double cluster standard

errors at the firm and year levels, which allows us to account for any cross-firm correlation

in the residuals as well as capture the fact that some control variables, including DTE, are

measured at an annual frequency. Our coefficient of interest in equation (2) is b1, which

measures the association between DTEs and returns.
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4.2 Return Regressions with Constant Decarbonization Rates

We begin our analysis by comparing the results for our regression models under the as-

sumption of constant-rate decarbonization paths. We further consider three sets of DTE

measures: (1) those based on constant emissions sort; (2) those based on forecasted emis-

sions sort; and (3) those based on Ambition Score sort. The first two of the three sets

are further divided depending on whether the sorting variable is industry-adjusted or not.

For the Ambition Score sort, we conduct the exclusion by filling the carbon budget using

constant emissions and forecasted emissions, respectively. We report the results in Table

4. Throughout all six specifications, we find a strong negative predictive relation between

measures of DTE and next-month stock returns, consistent with the view that companies

with higher DTE face lower carbon transition risk and thus investors require lower returns

for holding them. All six coefficients of DTE are statistically significant at the 1% level of

statistical significance. The effects are also economically significant. To illustrate, a coef-

ficient in column (1) equals -0.045 and the standard deviation of DTE in this specification

is 10.1. This means that a one-standard-deviation increase in DTE is associated with 0.46

percentage-point lower stock returns per month, or 5.5% annualized. Among other controls,

LOGMB and momentum are positively related to future stock returns and leverage and size

are negatively related. All other characteristics are statistically insignificant.

In the next test, we examine the persistence of the DTE signals. For that reason, we

lag all DTE in our regressions by one year. We report the results in Table 5. As can be

seen from the results, the predictive power of DTE weakens as we extend the horizon, which

is expected given that the information from old DTE becomes stale after some time and

investors possibly consider newer information in forming their demand. Still, we observe

a negative relation between all measures of DTE and stock returns. Notably, two of the

measures, based on constant emission sorts, still retain their statistical significance. At the

same time, measures based on forecasted emissions and ambition scores are significantly

weaker. These results suggest that DTE contain persistent information for stock returns.
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4.3 Valuation Ratios

It is well known that stock returns are noisy proxies for expected returns. It is sometimes

possible to get more precise measures of expected returns based on analyst forecasts. How-

ever, a major challenge with this approach is that (1) analyst forecasts are only available

for a relatively small subset of global stocks; (2) analyst forecasts may be biased because of

industry incentive structures; and (3) the metric of implied cost of equity critically depends

on the postulated valuation model.

As an alternative, we look at the pricing of carbon emissions from a different perspective

and relate our firm-level carbon emission measures to three different valuation ratios, which

tend to be more stable over time and are available for a large set of firms. Looking at

valuation ratios helps us to better distinguish the explanation of our results as one based

on required expected returns vs. one due to luck. Accordingly, we estimate the following

regression model:

Valuation Ratioi,t = c0 + c1DTEi,t−1 + c2Controlsi,t−1 + µt + εi,t. (3)

Our dependent variables are three different firm-level valuation ratios all expressed in the

natural log scale: price-to-earnings ratio, LOGPE, market-to-book ratio, LOGMB, and price-

to-sales ratio, LOGPS. Our control variables include MOM, VOLAT, AGE, and SALESGR.

In addition, we use one and two year-ahead measures of SALESGR to proxy for future cash-

flow growth. Finally, in all specifications, we include country-, year-month-, and industry-

fixed effects. As before we double-cluster standard errors at the firm and year level. The

main independent variables of interest are six different variants of DTE. Our coefficient of

interest is b1. We present the results in Table 6.

In Panel A, we show the results for the price-to-earnings ratio. Consistent with our

hypothesis of the presence of carbon-transition risk, we find that companies with high values

of DTE have higher LOGPE. The effects are statistically significant at the 1% level of

significance for all six measures of DTE. In Panel B, we show the results for LOGMB. We

again find a positive and largely significant relation between DTEs and LOGMB; however,

this time the results are statistically weaker for the DTE measures based on forecasted
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emissions. In Panel C, we report the results for LOGPS. The coefficients of all DTE measures

are positive and highly statistically significant. Overall, the results indicate strong pricing

effects for all six DTE measures. Given that we control for future sales growth (proxying

for future cash flows), these results are more consistent with the risk-based explanations of

returns rather than the cash-flow-based unexpected return story.

4.4 Additional Analyses

The results so far exploit the cross-sectional variation among companies that are sub-

jected to net-zero portfolio exclusion and assign maximum DTE values to companies that

never get excluded. However, one could argue that companies that are never excluded are

potentially very different from the rest and they are priced differently. We explore the ex-

tensive margin dimension by defining an indicator variable that is equal to 1 for companies

that never exit net-zero portfolios and is equal to zero for those companies that exit at

any point prior to and including the final year 2050. We replace our DTE measures with

such indicator variables in our specification (1). We report the results from estimating this

alternative model in Table 7. The results show a very strong negative coefficient of each

individual indicator function suggesting that companies that never exit have lower expected

returns than those that exit. The economic magnitude of the results is quite large with the

monthly differences in returns between 27 and 45 basis points, or 3.2-5.4 percentage points,

annualized.

Given that our DTE measures aim to capture transition risk, a natural question to ask

is whether the premia we observe increases in times when investors attach more importance

to such risk. The literature on climate finance has been commonly using the structural

break associated with the Paris Agreement of 2015, arguing that the transition risk has been

elevated following that accord (e.g., Bolton and Kacperczyk, 2021). We follow this literature

and define an indicator variable, which we label Paris, that is equal to one for the years

starting from 2016 and equal to zero up to and including 2020. To measure the incremental
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pricing effect of the structural shift, we estimate the following regression model:

RETi,t = d0 + d1DTEi,t−1 + d2DTEi,t−1 × Parist−1 + d3Controlsi,t−1 + µt + εi,t, (4)

Our coefficient of interest is d2. We report the results from our estimation in Table 8. In

Panel A, we focus on returns as a dependent variable. Throughout all specifications we

find a large and negative value of the coefficient suggesting that the risk premia increased

for low-DTE companies following the Paris agreement. The coefficient on DTE increases

by a substantial fraction relative to the previous period. In four out of six specifications

we document a statistically highly significant effect. In Panel B, we test the hypothesis

of increased risk premia from the perspective of companies’ LOGPE. Consistent with the

returns results we find a positive and economically significant effect of the Paris agreement

on valuations of firms with different DTE. Like in the previous panel, in four out of six

specifications, the coefficient of the interaction term is statistically significant. Overall, we

conclude that the pricing of DTE is consistent with it being a measure of transition risk.

Our DTE measures aim to capture forward-looking transition risk. One could argue that

some of the variation they capture also reflects past information. In fact, in constructing DTE

we also rely on past climate-related information such as measures of emissions and forward-

looking announcements. In addition, one may argue that DTE by themselves do not capture

information beyond the signals on which companies are sorted for net-zero portfolios. To shed

some evidence on these issues, in Table 9, we report the results from estimating the model

in which we include Ambition Score, the natural logarithm of total emissions, LOGCO2, the

percentage change in total emissions, Emissions Growth, and emission intensity, Emission

Intensity, as additional controls in the returns regression model.

We find that controlling for all the past information naturally reduces the magnitudes of

each DTE measure. However, we still find some independent variation that can explain stock

returns over and above the past information. We draw two conclusions from these results.

First, investors price in forward-looking information over and above the past information.

Second, our DTE are not simple alternative measures of transition risk but they carry distinct

information that is useful in pricing stocks. Further, the coefficients of the other climate-
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related variables are in line with earlier findings in the literature (Bolton and Kacperczyk,

2022b). The level and growth of emissions are positively associated with future stock returns

and emission intensity is not significantly related with future returns. Notably, we also find

that measures of ambition are not significantly related to future returns. The last result is

useful because independently we show that DTE based on ambition score do predict future

returns. Hence, the ability of DTE to predict future emissions does not simply derive from

the sorting measures alone but rather from their interaction with the carbon budget.

A basic version of our DTE is based on emissions that combine scope 1, scope 2, and

scope 3. One concern is that scope 3 could be more difficult to measure and thus our DTE

measures may be noisy. Another issue is that of double counting. We consider the latter

issue to be less problematic given that we care about the contribution of each firm to overall

emissions. In this section, we assess the importance of these potential issues by using DTE

that are based on the sum of scope 1 and scope 2 emissions only. With the alternative

measures, we estimate the model in equation (2). We report the results in Table 10. The

results of the model are qualitatively identical and quantitatively very similar to those in our

baseline model. Again, we find strong negative association between all six measures of DTE

and future stock returns. Thus, it is unlikely that our results are spurious or not robust to

alternative specifications.

Another dimension of carbon transition risk relates to disclosure of climate-related in-

formation. As previous studies have argued information about carbon emissions is only

disclosed by some and not all companies, and the decision to disclose is likely endogenous.

As such it is possible that the pricing of individual companies may depend on whether in-

formation about their carbon footprint is self-disclosed or measured by third party, such as

S&P Global. We examine the relevance of this process by conditioning our return regres-

sions on such information source. We define an indicator variable Disclosure that is equal

to one if the company directly discloses its emissions and is equal to zero if the information

is estimated by the data provider. To estimate the marginal impact of such information we

estimate the following regression model:

RETi,t = e0 + d1DTEi,t−1 + e2DTEi,t−1 ×Disclosuret−1 + e3Controlsi,t−1 + µt + εi,t, (5)
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We report the results from this model in Table 11. Across all specifications we find that

the marginal effect of disclosure on stock returns is statistically significant. However, the

direction of the effect differs across various categories of DTE. For the measures based on

constant and forecasted emissions we find a negative coefficient and for the measures based

on ambition score the coefficient is positive.

One of the key features underlying net-zero portfolios is the carbon budget. In our

analysis so far, we have assumed that investors follow the path determined by the constant

rate of decarbonization. However, in reality investors need not follow only such path. In

this section, we consider four alternatives to this path. As a first alternative, we consider

a situation in which investors wait the maximum number of years possible and after that

begin decarbonizing at a constant rate. Second, we consider the possibility in which investors

first decarbonize at a slower pace for the first half of their investment period and then they

decarbonize at a faster pace until they reach residual emissions in 2050. We call this path an

SF path. Third, we consider the opposite situation in which investors decarbonize first at a

faster rate and then at a slower rate, an FS path. Finally, we consider a theory-motivated

path from Andrew (2020). He follows mitigation curves of Raupach et al. (2014), which

describe approximately exponential decay pathways such that the quota is never exceeded.

These curves allow for some inertia in the early years of mitigation (“an oil tanker cannot

turn on a dime”). Notably, these are not exponential pathways: the rate of mitigation is not

the same every year. Finally, mitigation curves are defined such that the sum of historical

cumulative emissions and cumulative emissions following the mitigation curves exactly meets

the global emissions quota in 2100.

We report the results considering all the above decarbonization paths in Table 12. In

Panel A, we look at the impact on next-month stock returns following specification (1); in

Panel B we look at valuation regressions following specification (2). The results in Panel

A indicate a strong empirical robustness to the choice of different carbon budgets. For all

four decarbonization paths we estimate a strong negative coefficient of DTE that is highly

statistically significant. In Panel B, we use LOGPE as a dependent variable. Again, we

find results qualitatively similar to our baseline findings. Across all four alternative paths,

the coefficient of DTE is positive and highly statistically significant. Overall, we establish a
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robust relationship between firms’ DTE and their valuations. Companies with higher DTE

have lower expected returns and higher valuations consistent with the interpretation of DTE

being transition risk measures.

5 Conclusions

In the coming years and decades investors will be exposed to substantial transition risk.

Many forces will be behind this risk, including the uncertain technological progress and

ensuing legislation. What has emerged as a formidable factor is the role of social pressure

manifested by various stakeholders globally. With the intensifying climate events, one can

expect that this pressure can respond accordingly. Quantifying this pressure both in terms of

investors’ risks and companies’ cost of capital becomes economically first-order. In this paper,

we provide a formal framework of net-zero portfolios that allows us to quantify this economic

force. Net-zero portfolios generate a shock to asset ownership structure and possibly have

an ability to influence asset prices. Importantly, contrary to earlier studies on portfolio

holdings that isolate pricing effects due to realized divestment, the mechanism we propose

additionally operates through expected divestment forces and potential engagement coming

through the interaction between asset holders and corporate themselves.

We operationalize this empirical mechanism using a novel measure of distance-to-exit

(DTE). Using a global sample of stocks with cross sectionally and serially diverse DTE, we

show that companies that are more exposed to exit from net-zero portfolios have lower values

and require higher returns from investors holding them. This result is economically large

and is consistent with the view that DTE are useful measures of transition risk. Notably,

we show that DTE capture distinct variation to that captured by previously used measures

based on corporate carbon emissions. Distinct from these, they capture information that is

forward-looking and is grounded in climate science.

At the broad level, to our knowledge, our study is the first one to highlight the role

of expected divestment and its role in asset prices. We are also one of the first studies

in economics that formally links transition risk to scientific evidence grounded in IPCC

projections. In fact, we show the importance of communicating such information to firms
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and investors, as it enters directly into portfolio decisions of institutional investors and cost

of capital calculation and investment decisions of firms. Hence, we can argue that scientific

evidence on climate can be a useful macro-level predictor of asset prices.

Even though our study aims to provide a comprehensive evidence on the asset pricing

implication of net-zero portfolios, we believe it lends itself naturally to additional investiga-

tions, both theoretical and empirical. On the theory side, one of the promising avenues to

explore is the game-theoretic foundation of the interactions between institutional investors

and corporates through the competitive force induced by tight carbon budget. We show that

it is not only individual companies’ decarbonization efforts but also their competitors’ actions

that determine the equilibrium expected returns due to transition risk. On the empirical

side, we provide a flexible framework that should allow to incorporate general climate-related

information into transition risk framework. Unlike the typical studies that introduce such

information on a case-by-case basis, our framework allows us to aggregate signals into one

sufficient statistic, captured by DTE. All in, much more remains to be done, and we hope

this study opens up the burgeoning literature on climate finance to new avenues of research.
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Appendices
This Appendix provides the details related to the construction of the variables we use

to select stocks into NZP. First, we discuss the data on commitments. Next, we discuss
the data entering forecasted emissions. Finally, we discuss the components of the Ambition
Score.

A Commitments Data

We construct the CDP target-based emission pathway by aggregating decarbonization
commitments with different ambitions and horizons at the firm level. We start by catego-
rizing the targets into seven scope groups: (1) scope 1, (2) scope 2, (3) scope 3, (4) scope
1+ 2, (5) scope 1+ 3, (6) scope 2+ 3, and (7) scope 1+ 2+ 3. We then screen targets using
the following criteria. For a specific target to be considered valid, both the survey year and
target year should be greater than the base year. Additionally, targets up to and including
the current survey year are not forward looking and hence are not considered valid. We
categorize commitments with target years of up to 4 years from the survey year as short-
term targets and the rest as medium-to-long-term. Next, in each survey year, we compute
the targeted reduction in emissions level based on the reduction ambition abatement rate
normalized by the boundary of the target as discussed earlier for every target.

Many firms report multiple targets within the same scope and time frame, which would
lead to multiple target-based emissions pathways. In order to generate one representative
forecast, we perform a series of filtering steps to arrive at a single pathway for each firm on
its scope 1 + 2 and scope 1 + 2 + 3 forecasts, respectively. Within each scope group and
time horizon, we select the target with the highest level of SBTi validation, with the progress
status underway (instead of achieved), and with the highest target reduction in emission lev-
els. Specific to scope 3, firms sometimes set up multiple targets regarding different segments
of their emissions; for example, two scope 3 targets with the same target year on business
travel and downstream transportation, respectively. In these cases, instead of selecting only
one target, we aggregate the emission reduction implied by these two segments of targets
for the overall scope 3 forecasts. Note that this process allows for only one target emissions
checkpoint per target year, but it allows for multiple targets with different target years.

In each survey year t, our forecast horizon is the furthest target year of any firm. Within
each of the seven scope groups, we translate multiple targets into the same amount of target
emissions level checkpoints in different target years. Then, we construct forecasts for scope
1 + 2 and scope 1 + 2 + 3 emissions by inferring the target emissions from the seven scope
groups. We prioritize the targets that are better defined and constraining such that we prefer
individual scope targets (e.g., inferring scope 1 + 2 target from individual targets on scope
1 and scope 2) over targets combining scopes (e.g., scope 1 + 2, scope 1 + 2 + 3, etc). With
this preference hierarchy, we consider all the possible combinations to allow for a maximum
amount of checkpoints for the scope 1 + 2 and scope 1 + 2 + 3 emissions pathways. For
example, to infer scope 1 + 2, we first search for individual targets on scope 1 and scope
2, then we search for scope 1 + 2, third we try to use scope 1 + 2 + 3 subtracting scope 1,
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and so on. We interpolate linearly between checkpoints. The horizon of the target pathway
depends on the target year of the company’s commitments. In the case of a company having
a shorter horizon for scope 1+2+3 emissions pathways than scope 1+2, we try to infer the
implied scope 3 emissions target by the difference between the two pathways and hold the
latest implied scope 3 emissions constant to lengthen the scope 1+2+3 emissions pathways.
We do the reverse for scope 1+2 pathways as well. If none of the above options are available
to back out scope 1 + 2 and scope 1 + 2 + 3 emissions pathways, we also consider partially
using constant emissions. For example, for the scope 1 + 2 pathway, we hold the current
scope 1 emissions constant if only scope 2 checkpoints are available.

B Forecasted Emissions

We obtain all the firm commitments data tracked by the annual CDP survey from 2011 to
2020. CDP started asking its member companies to report their emissions reduction targets
from 2011. The format of the CDP survey evolved over the years and its structure has only
been standardized recently. Company commitments can take different forms, including car-
bon intensity improvements, absolute emissions reductions, or other formats like percentage
of procurement. In our study, we focus on commitments to reduce absolute emissions only
as they are considered to require most effort, are more difficult to manipulate, and translate
directly into a global decarbonization objective (Bolton and Kacperczyk, 2022a). Since a
company could be following the same commitment over multiple reporting years, we define
survey year as the year of the CDP survey for which a specific emissions reduction target
was observed. Commitments also vary in terms of the choice of a base year for emissions,
the horizon of the target, and the target ambition, expressed as a percentage of emissions
reduction over the target horizon. For comparability of targets within and across firms, for
each survey year, we convert the target ambition into linear annual reductions, LAR, as
follows:

LAR =
% Emissions reduction commitment from base year to target year

target year− base year
. (6)

Notably, LAR measures the scope of emissions reduction over the entire time frame of the
target (base year to target year), and not over the remaining portion of the commitment
(current year to target year). As such, firms are not penalized by ignoring their early actions
(CDP, 2020).

Firms also tend to have multiple targets with different scope coverage in each survey
year.11 Within a given emissions scope, we denote CECOVER as the reported percentage of
carbon emissions that will be covered by the boundary of the target; for example, 100% of
combined scope 1+2 is covered by the target. The early vintage of the CDP surveys reports
missing values of CECOVER or CECOVER≤ 1% even if the level of target-covered emissions
exists and is sizable. In such cases, we back out CECOVER by taking the ratio of emissions
in tons covered by the target reported by CDP, relative to total base year emissions in the
corresponding scope, reported by Trucost. The maximum value we allow for CECOVER is

11For example, Table IA.2 shows that 840 companies reported 1451 targets in 2020.
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100%. We also perform manual checks if the same target is followed by a firm over multiple
years, and we fill missing CECOVERs accordingly. We try to maximize the availability of
the emissions’ coverage ratio CECOVER because it is an important normalizing factor for
the calculation of the ambition of the target. Our final measure of the abatement rate is the
normalized LAR:

Normalized LAR = LAR× CECOVER. (7)

Based on the above, we define the Targeted Reduction in Emissions Level as:

Targeted Reduction in Emissions Level = (8)

Normalized LAR× (target year – base year)× baseyear emissions. (9)

The above measure is the first of the two main inputs in our measure of forecasted emissions.
The second element of our emissions forecasts is the past emissions trend-based pathway,

with the forecast horizon from a given year t to 2050. We use a three-year moving average of
the emissions growth rate to proxy for the short-term growth rate from t to t+2. We proxy
for the long-term industry-level emissions growth rates using annual growth rates from 2006
to 2020 across all firms. We apply the above long-term growth rate to data from t+ 15 and
hold it constant until 2051. Between years t+3 and t+15, we let the short-term growth rate
converge to the long-term growth rate using exponential interpolation. Scope 3 emissions
data may suffer from double-counting issues. Additionally, emissions data becoming more
available in more segments of scope 3 and re-classification of the scopes may further introduce
noise in the growth rates. Therefore, we use scope 1+2 growth rate to proxy for scope 1+2+3
growth rate for the short-term growth rate. Only in cases where scope 1 + 2 growth rate
is larger than 50%, we consult the scope 1 + 2 + 3 growth rate and use the smaller value
between the two. While it is possible for a fast-growing firm to have a 50% emissions growth
rate, it is less intuitive to assume these sizable growth rates to persist far into the future.
Regarding the long-term growth rate, we use the unconditional growth rate based on scope
1 + 2 growth rate to forecast both scope 1 + 2 and scope 1 + 2 + 3 emissions. If a company
has a decarbonization target, but its implied long-term growth rate is positive, we assume
the long-term growth rate to be zero. We let the current emissions level evolve based on the
interpolated growth rates to construct past trend-based emissions pathway for both scope
1 + 2 and scope 1 + 2 + 3 scenarios.

C Construction of the Ambition Score

Corporate Social Responsibility Indicators

We focus on six firm characteristics that are directly linked to a firm’s potential decar-
bonization actions, obtained from Refinitiv. The primary underlying source for Refinitiv is
the company’s Corporate Social Responsibility (CSR) report. The six CSR indicators relate
to the following questions: (i) does the company have any decarbonization target?; (ii) does
the company have any decarbonization policy?; (iii) does the company report its emissions?;
(iv) does the company have a CSR committee or team?; (v) has the company signed the
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United Nation Principles for Responsible Investment (UNPRI)?; and (vi) does the company
support the UN Sustainable Development Goal 13 (SDG 13) on Climate Action? Table IA.2
reports the percentage of firms with an environmentally positive answer to the above six
questions. We can observe an increasing trend in the number of firms classified positively
based on these CSR metrics. We note the drop in the percentage of positive answers be-
tween 2016 and 2017, which was predominantly driven by the expansion of the stock universe
covered by Trucost into smaller firms.

Green and Brown Efficiency Innovation

In the second category, we quantify the scope of green patenting activity, both in terms of
the volume as well as the impact of patents. Our source of patent data is Orbis Intellectual
Property, which provides a comprehensive coverage of patent filings and corporate ownership
of patents by listed and unlisted companies in 81 countries. This data set includes 136 million
patents held by 2.3 million firms. It also provides patent citations, which are a good measure
of the importance of the innovation protected by the patent. Following Bolton et al. (2023),
we classify patents into green and brown-efficiency categories. Both types of patents aim to
reduce carbon footprint. Subsequently, we define the following six variables that enter into
construction of our Ambition Score: Green patent number is the number of green patents
registered by a company in a given year, Brown patent number is the number of brown-
efficiency patents registered by a company in a given year, Green patent citation number
is the cumulative number of citations to green patents registered by a company in a given
year, Brown patent citation number is the cumulative number of citations to brown-efficiency
patents registered by a company in a given year, Green patent ratio is the number of green
patents registered by a company in a given year scaled by the total number of patents of
the same company in that year, and Brown patent ratio is the number of brown-efficiency
patents registered by a company in a given year scaled by the total number of patents of
the same company in that year. Table IA.2 reports the percentage coverage of firms with
a positive number of green and brown-efficiency patents. In general, the patent coverage is
stable over the time horizon from 2006 to 2020. The change in the coverage from 2016 to
2017 is driven by the inclusion of a substantial amount of small firms in our stock universe.

CDP Indicators

In the last category, we define factors that relate to firms’ decarbonization commitments.
Specifically, we focus on five metrics of such commitments.

We begin by measuring the rate of emissions abatement. Assuming a constant CECOVER
between the base year and the survey year, we define the actual linear annual reduction
achieved as:

Actual LAR =
Emissions in base year− Emissions in survey year

Emissions in base year× (survey year− base year)
. (10)

Subsequently, in each survey year, we define the Dynamic Abatement Rate as the differ-
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ence between the planned reduction target and the actual reduction achieved as:

Dynamic Abatement Rate =
1

target year− survey year
×(

% Emission reduction from base year to target year−

Actual LAR× (survey year− base year)
)
.

(11)

This reflects the actual reduction effort required per year accounting for the target progress
to date.

One could argue that the level of Dynamic Abatement Rate can go both ways, indicat-
ing either a more ambitious target or underperformance relative to the planned reduction.
Therefore, we further transform the dynamic abatement rate into its difference with the ac-
tual annual emission reduction rate calculated using a three-year moving average of emissions
growth rate. We interpret the difference as the degree of impracticability of the target.

Evaluating the company’s progress against its promise is also important. A simple mea-
sure of underperformance is the difference between Normalized LAR and the actual annual
emissions reduction rate, calculated using a three-year moving average of emissions growth
rate. Alternatively, the CDP survey calculates target progress as the proportion of tar-
get achieved relative to the base year using reported base year and survey year emissions.
Multiplying the target progress by LAR gives the actual percentage reduction achieved.
Furthermore, we use the Trucost emissions when CDP data are missing.

CDP also reports the year when the target was initially set and we also track the first
year a target appears, denoted as target setting year. Tracking the target progress when a
target was initially set helps us to gauge if a firm deliberately selects a base year with high
emissions for easy target completion. Our greenwashing indicator is defined as

Greenwashing =
Emissions in base year− Emissions in target setting year

Emissions in base year
×

1

% Emission reduction from base year to target year
.

(12)

Finally, the CDP survey also includes the SBTi status for each target from 2015. To join
the SBTi a company must first sign a commitment letter. Then the company has to develop
and submit a science-based emission reduction target for validation within 24 months. Once
the target has been validated it is disclosed. We also classify targets into three groups in
terms of their SBTi involvement: (1) SBTi approved, (2) SBTi committed, and (3) non-
SBTi. We give more credit to the targets with SBTi validations when we forecast emissions
and construct composite ambition scores.

To illustrate the mechanics of each of the above indicators, we again focus on Apple, which
made commitments to CDP. In 2020, Apple set a new target of 75% reduction covering 100%
of scope 1, 2, and 3 with 38, 400, 000 tons of base year absolute emissions over the 2015-2030
period. As of 2020, scope 1, 2, and 3 emissions of Apple are not decreasing but growing
at a rate of 2.70% based on a three-year moving average. The Normalized LAR is 5%
per year with a target horizon of 15 years; the target underperformance is thus 7.70%. In
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this example, 2020 is both the survey year and the target-setting year. The reported 2020
emissions covered by the target is 25, 100, 000 tons, indicating that the reduction achieved
is already 34.64% between the base year 2015 and the target setting year 2020 and the
greenwashing indicator is 46.18% (34.64%

75%
). The reduction left is 75%−34.64% = 40.36% and

that indicates a Dynamic Abatement Rate of 4.04% per year from 2020 to 2030, leading to
a target impracticability measure of 6.74%. The SBTi status for this target is classified as
committed but not yet approved.

To construct the composite Ambition Score, we follow the following three steps. First,
we process the variables, including converting all the Boolean variables from the CSR report
into numerical values, and computing and filtering the CDP target-related variables. All
variables included in the score are expressed in units consistent with the assumption that a
less climate-aligned firm receives a higher value. Except for the emissions-related variables
for which we exclude missing values, we penalize the non-reporters by applying the worst
possible value in a given industry. For example, we allocate a value of 2 if a firm only has
non-SBTi targets or does not have a target at all, a value of 1 if a firm has SBTi committed
targets, and a value of 0 if the targets are SBTi approved. Note that we do not penalize firms
with no targets using the worst greenwashing indicator; instead, we assume zero greenwashing
in the absence of any targets. Second, we apply the best-in-class method by standardizing
each variable within GICS-4 industry groups using the z-score transformation. Third, we
aggregate variables within each sub-category using equal weights and then construct the final
composite score using appropriate weights.

Below, we present an example of the Ambition Score breakdown for Apple Inc., as of the
end of 2020. The illustrative case is further extended into all companies and all years of our
data. In column 1, we show the category label. In column 2, we report the weights assigned
to each category. Column 3 reports the corresponding data source. Column 4 details each
component within each category. Column 5 shows the data as reported by the company.
Column 6 illustrates our transformation of the reported value into the score input. Column
7 presents the values that are first industry adjusted and then standardized using z-scores.
In general, higher values of the score are associated with lower ambition of a company.

Category Category
Weight

Data
Source

Variables Reported Value Score Input Standardized
Value

Historical emissions data 50% Trucost
Emissions level 30,119,516.91 30,119,516.91 128.31

Emissions growth 0.03 0.03 0.09

Historical emissions intensity data 25% Trucost
Emissions intensity 109.72 109.72 -0.94
Intensity growth -0.04 -0.04 -0.16

Forward-looking soft data 25%

CSR Report

Decarbonization target existence Yes 0 -2.61
Decarbonization policy existence Yes 0 -1.75

Emission disclosure Reported 0 -1.93
Sustainability committee existence Yes 0 -2.08

UNPRI signatory No 1 NA
SDG13 climate action Yes 0 -2.64

Orbis Patent

Green patent number 9 -9 -0.71
Brown patent number 0 0 0.13

Green patent citation number 20 -20 -5.39
Brown patent citation number 0 0 0.1

Green patent ratio 0.03 -0.03 0
Brown patent ratio 0 0 0.07

CDP Survey

SBTi participation Submitted 1 -2.8
Greenwashing indicator 46.18 46.18 3.18

Abatement rate 5 -5 -6.35
Target underperformance 7.7 7.7 -3.83
Target impracticability 6.74 6.74 -3.78

Final Score 31.47
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We observe that Apple’s Ambition Score is equal to 31.47. The main individual factors
contributing negatively to the score are carbon emissions levels and greenwashing indicator.
On the other hand, Apple’s score is reduced by the impact of its green patents, abatement
rate, CDP target performance.
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Figure 1: Global carbon budget.

This figure shows how the different choices of decarbonization paths evolve over time from 2006 to 2020. The green pathways,
denoted as Const, assume that investors follow a constant reduction rate from the first year, so that the terminal emissions
value in 2050 is smaller than 0.1 GtCO2e. The light blue pathways, denoted as ZeroConst, assume that investors delay the
decarbonization process for a while by applying constant emissions, but then it assumes a faster constant reduction rate. The
yellow pathways, denoted as SF , switch decarbonization rate from a slow reduction rate of 1% to a faster reduction rate that is
not larger than 30% (selected based on feasibility) after several years. The dark blue pathways, denoted as FS, switch from a
faster reduction rate to a slow reduction rate of 1%. Here, the faster rate is applied to the maximum number of years possible
to make the 2050 emissions budget as low as possible while making sure we fully use up the total cumulative budget. The
orange pathways, denoted as RAEM , follow the emissions mitigation pathway of Andrew (2020). The mitigation curves were
adapted from Raupach et al. (2014) by Andrew (2020).
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Figure 2: Net-Zero Portfolio carbon budget.

This figure illustrates the correspondence between the global decarbonization pathway and one applied at the portfolio level.
The coefficient of proportionality between the two pathways is equal to the ratio of the portfolio emissions (24.80 GtCO2e) in
2020 over the world emissions (39.32 GtCO2e).
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Figure 3: Industry exposure (in %) for the DTE-investable stocks relative to the Trucost
universe as of 2020.

This figure shows industry exposures of DTE portfolios compared with those displayed by the universe of all stocks in the
Trucost database. We show the DTE portfolios based on industry-adjusted forecasted emissions in the left panel and the DTE
portfolios based on Ambition Score incorporating forecasted emissions in the right panel. We provide the industry exposure of
DTE portfolios using the snapshot of observations in 2020. The three investable sets we consider are: stocks with DTE ≥ 5,
stocks with DTE ≥ 15, and stocks with DTE ≥ 30.
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Figure 4: The number of DTE-investable stocks as of 2020.

This figure shows the number of stocks held in DTE portfolios compared with those in the universe of all stocks in the Trucost
database. We show the DTE portfolios based on industry-adjusted forecasted emissions in the left panel, and the DTE
portfolios based on Ambition Score incorporating forecasted emissions in the right panel. We provide the number of stocks in
DTE portfolios using the snapshot of observations in 2020. The three investable sets we consider are: stocks with DTE ≥ 5,
stocks with DTE ≥ 15, and stocks with DTE ≥ 30.
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Figure 5: Carbon emissions of DTE-investable stocks relative to the Trucost universe as of
2020: constant-emissions model.

This figure shows the decarbonization performance of DTE portfolios compared with those in the universe of all stocks in the
Trucost database. We show the DTE portfolios based on industry-adjusted forecasted emissions in the left panel and the DTE
portfolios based on Ambition Score incorporating forecasted emissions in the right panel. We provide the percentage reduction
in carbon footprint on a given DTE portfolio using the snapshot of observations in 2020. The carbon footprint is based on the
observed annual emissions in 2020. The three investable sets we consider are: stocks with DTE ≥ 5, stocks with DTE ≥ 15,
and stocks with DTE ≥ 30.
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Figure 6: Carbon emissions of DTE-investable stocks relative to the Trucost universe as of
2020: forecasted-emissions model.

This figure shows the decarbonization performance of DTE-investable stocks compared with those in the universe of all stocks
in the Trucost database. We present DTE-investable stocks at three time stamps: 2025, 2035, and 2050. We show the
investable sets based on industry-adjusted forecasted emissions in the left panel and the investable sets based on Ambition
Score incorporating forecasted emissions in the right panel. We provide the percentage reduction in carbon footprint on a given
investable set using the snapshot of observations in 2020. The carbon footprint is based on the 2020 emissions forecasts over
the horizon from 2020 to 2050.
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Figure 7: Percentage deviations of DTE-investable stock characteristics from the Trucost
universe as of 2020.

This figure shows the style characteristics of DTE portfolios compared with those in the universe of all stocks in the Trucost
database. We show the DTE portfolios based on industry-adjusted forecasted emissions in the left panel and the DTE
portfolios based on Ambition Score incorporating forecasted emissions in the right panel. We provide the percentage deviation
for characteristics and carbon footprint on a given DTE portfolio from the Trucost portfolio using the snapshot of observations
in 2020. The characteristics we consider include LOGASSETS, LEV ERAGE, LOGMB, MOM , and ROE. Carbon footprint
is based on both 2020 emissions and emission forecasts. The three investable sets we consider are: stocks with DTE ≥ 5, stocks
with DTE ≥ 15, and stocks with DTE ≥ 30.
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Table 1: Summary Statistics

This table reports summary statistics (mean, standard deviation, the 25th, 50th, and 75th percentile) for the variables used
in regressions. The sample period is 2006-2020. Panel A reports the emission variables. Panel B shows the Ambition Score
and its industry-adjusted sub-components. Panel C reports the one-year and five-year ahead forecasted emissions and DTEs
derived using different metrics of ranking variables. We show three sets of DTE measures: (1) two based on constant emissions
sort; (2) two based on forecasted emissions sort; and (3) two based on Ambition Score sort. The first two of the three sets
are further divided depending on whether the sorting variable is industry-adjusted or not. For the Ambition Score sort, we
conduct the exclusion by filling the carbon budget using constant emissions and forecasted emissions, respectively. Panel D
summarizes information on firm-level variables that enter our regression models. RET is the monthly stock return; LOGPE is
share price divided by earnings per share; LOGMB is market cap divided by its book value; LOGPS is the share price divided
by sales per share; LOGSIZE is the natural logarithm of market capitalization; LOGASSETS is the natural logarithm of
asset value; LEV ERAGE is the ratio of debt to book value of assets; MOM is the average stock returns over the one-year
period; INV EST/ASSETS is capital expenditures divided by the book value of its assets; LOGPPE is the natural logarithm
of the property, plant, and equipment; V OLAT is the standard deviation of returns based on the past 12 monthly returns;
ROE is the ratio of net yearly income divided by the value of equity; AGE is firm age; DOLV OL is the dollar volume in billion;
SALESGR is the annual growth rate in firm sales.

Mean Std.Dev Q25 Median Q75

Panel A: Carbon Emissions
Carbon Emissions (Scope 1, 2, 3 upstream) 3094098 14507951 50600 239626 1135341
Growth Rate in Carbon Emissions (Scope 1, 2, 3 upstream) 0.134 0.416 -0.023 0.053 0.167
Carbon Emissions Intensity (Scope 1, 2, 3 upstream) 550.287 1708.348 87.231 193.004 423.004
Growth Rate in Carbon Emissions Intensity (Scope 1, 2, 3 upstream) 0.007 0.142 -0.042 -0.014 0.028

Panel B: Ambition Score Variables (Industry-Group Standardized)
Ambition Score 0.701 8.100 -0.088 0.146 0.583
Carbon Emissions (Scope 1, 2, 3 upstream) 1.460 14.629 -0.218 -0.004 0.735
Growth Rate in Carbon Emissions (Scope 1, 2, 3 upstream) 0.386 2.063 -0.401 0.000 0.579
Carbon Emissions Intensity (Scope 1, 2, 3 upstream) 1.409 55.598 -0.287 0.000 0.622
Growth Rate in Carbon Emissions Intensity (Scope 1, 2, 3 upstream) 0.497 5.655 -0.464 0.000 0.471
Decarbonization Target 0.010 0.991 0.292 0.402 0.543
Decarbonization Policy 0.016 0.994 -1.029 0.556 0.755
Reported Emissions 0.017 0.992 -1.056 0.525 0.708
CSR Committee 0.017 0.991 -1.042 0.490 0.668
UNPRI Signatory 0.009 0.973 0.039 0.044 0.089
SDG 13 Climate Action 0.013 1.006 0.043 0.323 0.422
# Patents (Green) 0.001 0.980 0.080 0.110 0.186
# Patents (Brown) 0.007 0.933 0.076 0.113 0.153
# Patent Citations (Green) 0.003 0.979 0.070 0.130 0.209
# Patent Citations (Brown) 0.004 0.974 0.072 0.104 0.162
Ratio of # Green Patents over # Patents -0.004 1.003 0.083 0.188 0.294
Ratio of # Brown Patents over # Patents 0.002 0.984 0.067 0.106 0.200
SBTi Status 0.006 0.989 0.123 0.151 0.190
Greenwash Indicator 0.002 1.003 -0.097 -0.060 -0.022
Abatement Rate 0.005 0.991 0.144 0.178 0.214
Underperformance 0.006 0.988 0.197 0.244 0.293
Infeasible Indicator 0.004 0.996 0.187 0.216 0.253

Panel C: DTE-Related Variables
Forecasted Emissions t1 3248288 15635351 53408 253908 1192281
Forecasted Emissions t5 4657073 35491481 61523 313218 1528164
DTE Constant Emissions 23.571 10.096 16.000 24.000 31.000
DTE Industry-Adjusted Constant Emissions 19.474 10.320 11.000 19.000 28.000
DTE Forecasted emissions 22.834 11.029 13.000 24.000 32.000
DTE Industry-Adjusted Forecasted Emissions 18.774 11.029 9.000 18.000 29.000
DTE Ambition Score Cum Constant 13.026 7.721 8.000 12.000 17.000
DTE Ambition Score Cum Forecasted 13.082 8.732 6.000 12.000 18.000

Panel D: Additional Regression Variables
RET 1.012 13.143 -4.945 0.452 6.108
LOGPE 3.033 0.927 2.504 2.960 3.451
LOGMB 0.710 1.013 0.082 0.663 1.306
LOGPS 0.302 1.328 -0.532 0.282 1.087
LOGSIZE 9.619 2.606 7.869 9.413 11.273
LOGASSETS 9.644 2.717 7.809 9.385 11.387
LEVERAGE (winsorized at 2.5%) 0.225 0.182 0.068 0.203 0.340
MOM (winsorized at 2.5%) 0.100 0.402 -0.164 0.047 0.286
INVEST/ASSETS (winsorized at 2.5%) 0.047 0.046 0.015 0.034 0.064
LOGPPE 7.906 3.243 5.759 7.798 10.029
VOLAT (winsorized at 2.5%) 0.098 0.053 0.061 0.086 0.121
ROE (winsorized at 2.5%) 0.198 0.240 0.075 0.166 0.286
AGE 57.304 48.361 23.000 42.000 78.000
DOLVOL in Billion (winsorized at 2.5%) 17.991 51.326 0.148 0.987 6.115
SALESGR (winsorized at 2.5%) 0.091 0.208 -0.001 0.052 0.152
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Table 2: Table 2 DTE: Basic Properties

Panel A reports Pearson correlation across various DTEs as defined earlier, carbon emissions and the Ambition Score. Panel
B shows the time-series variation of the stock universe and DTEs. We show the number of firms with available data for the
computation of DTEs in the first column. We then show the average DTEs overtime.

Carbon
Emissions

(Scope 1, 2, 3
upstream)

Ambition Score DTE Constant
Emissions

DTE Industry
Adjusted
Constant
Emissions

DTE
Forecasted
emissions

DTE Industry
Adjusted
Forecasted
Emissions

DTE Ambition
Score Cum
Constant

Panel A: Correlations
Ambition Score 0.099 1.000
DTE Const. Emissions -0.380 -0.080 1.000
DTE Ind. Adj. Const. Emissions -0.287 -0.093 0.741 1.000
DTE Forecasted Emissions -0.341 -0.089 0.871 0.662 1.000
DTE Ind. Adj. Forecasted Emissions -0.257 -0.099 0.621 0.822 0.770 1.000
DTE Ambition Score Cum Const. -0.205 -0.156 0.342 0.432 0.466 0.566 1.000
DTE Ambition Score Cum Forecasted -0.193 -0.146 0.329 0.422 0.469 0.575 0.986

Year No. Firms DTE Constant
Emissions

DTE Industry-
Adjusted
Constant
Emissions

DTE
Forecasted
emissions

DTE Industry-
Adjusted
Forecasted
Emissions

DTE Ambition
Score Cum
Constant

DTE Ambition
Score Cum
Forecasted

Panel B: Stock universe and average DTEs by year
2006 2510 29.087 23.007 27.393 22.091 14.894 13.093
2007 2696 28.251 22.692 25.188 18.801 14.142 13.393
2008 2672 27.539 22.313 25.743 20.874 14.118 13.675
2009 2789 26.652 21.428 26.272 21.918 12.971 13.706
2010 2931 26.041 21.251 25.989 21.458 12.932 14.108
2011 3154 25.456 20.653 25.088 20.043 13.437 14.102
2012 3328 24.882 20.110 24.023 18.388 12.858 12.347
2013 3351 24.199 19.361 23.998 18.568 12.770 13.209
2014 3958 23.610 19.175 23.127 19.056 12.983 13.439
2015 4280 23.050 18.893 23.375 19.316 12.928 14.554
2016 4483 22.369 18.376 22.679 18.585 12.330 14.014
2017 10401 23.321 19.522 21.887 17.836 13.138 12.227
2018 11300 22.715 19.048 20.801 17.081 13.546 12.758
2019 12032 22.079 18.624 21.420 18.183 12.778 12.501
2020 12855 21.423 18.065 21.873 18.831 12.219 13.024
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Table 3: Determinants of the Distance-to-Exit (DTE)

This table reports estimates of Equation (1). The dependent variables are DTEs as defined in Panel C of Table 1. The indepen-
dent variables are defined in Panel D of Table 1, including LOGCO2, LOGMKTCAP, LOGASSETS, LOGMB, LEVERAGE,
MOM, INVEST/ASSETS, LOGPPE, VOLAT, ROE, DOLVOL, and AGE. The sample period is 2005-2020. We report the
results of the pooled regression with standard errors (in parentheses) double clustered at the firm and year levels. All regressions
include year-month-fixed effects, country-fixed effects, and Trucost industry-fixed effects. ***1% significance; **5% significance;
*10% significance.

Constant Emissions Forecasted emissions Ambition Score

(1) (2) (3) (4) (5) (6)
DTE Constant

Emissions
DTE Industry-

Adjusted
Constant
Emissions

DTE
Forecasted
Emissions

DTE Industry-
Adjusted
Forecasted
Emissions

DTE Ambition
Score Cum
Constant

DTE Ambition
Score Cum
Forecasted

LOGCO2 -3.695*** -3.952*** -4.098*** -4.196*** -2.182*** -2.418***
(0.296) (0.208) (0.298) (0.212) (0.084) (0.104)

LOGMKTCAP -0.258*** -0.778*** -0.409*** -0.858*** 0.050 0.049
(0.076) (0.076) (0.085) (0.100) (0.107) (0.123)

LOGASSETS -0.475*** -0.914*** -0.149 -0.587*** 0.057 0.056
(0.065) (0.101) (0.090) (0.103) (0.104) (0.118)

LOGMB -0.072 0.118 -0.446*** -0.388*** -0.412*** -0.486***
(0.070) (0.075) (0.104) (0.102) (0.097) (0.109)

LEVERAGE -0.397 -1.074*** -0.842*** -1.225*** -0.056 -0.072
(0.237) (0.326) (0.277) (0.385) (0.338) (0.380)

MOM 0.367*** 0.508*** 0.031 0.202 -0.689*** -0.809***
(0.075) (0.099) (0.181) (0.194) (0.166) (0.203)

INVEST/ASSETS 0.204 0.965 -11.544*** -10.524*** -11.750*** -13.678***
(0.693) (0.882) (1.803) (1.664) (1.468) (1.678)

LOGPPE 0.237*** 0.409*** 0.525*** 0.746*** 0.497*** 0.577***
(0.064) (0.076) (0.090) (0.089) (0.073) (0.084)

VOLAT -5.687*** -6.517*** -8.331*** -9.911*** -3.718*** -4.457***
(0.580) (0.764) (1.158) (1.297) (0.743) (0.842)

ROE 1.341*** 1.044*** 0.540* 0.076 -0.131 -0.233
(0.273) (0.301) (0.277) (0.291) (0.231) (0.262)

DOLVOL -0.007*** -0.005*** -0.007*** -0.006*** -0.002 -0.002
(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

AGE 2.027* 3.503** 13.479*** 15.239*** 17.090*** 19.314***
(1.005) (1.531) (1.893) (2.110) (1.937) (2.292)

Constant 74.848*** 83.264*** 77.005*** 82.560*** 37.643*** 40.417***
(2.996) (2.781) (3.048) (2.709) (1.127) (1.266)

Country-fixed effects Yes Yes Yes Yes Yes Yes
Industry-fixed effects Yes Yes Yes Yes Yes Yes
Year-month-fixed effects Yes Yes Yes Yes Yes Yes
Observations 794,266 794,266 794,266 794,266 794,266 794,266
R-squared 0.897 0.802 0.722 0.617 0.280 0.275
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Table 4: Returns and DTEs

This table presents the estimation results of equation (2). The dependent variable is RET measured monthly. The main
independent variables are DTEs constructed with different ranking variables as defined in Panel C of Table 1. Control variables
include LOGMKTCAP, LOGMB, LEVERAGE, MOM, INVEST/ASSETS, LOGPPE, VOLAT, ROE, DOLVOL, and AGE, as
defined in Panel D of Table 1. The sample period is 2005-2020. We report the results of the pooled regression with standard
errors (in parentheses) double clustered at the firm and year levels. All regressions include year-month-fixed effects, country-
fixed effects, and Trucost industry-fixed effects. ***1% significance; **5% significance; *10% significance.

Dependent variable: RET Constant Emissions Forecasted Emissions Ambition Score

(1) (2) (3) (4) (5) (6)

DTE Constant Emissions -0.048***
(0.012)

DTE Industry-Adjusted Constant Emissions -0.040***
(0.010)

DTE Forecasted Emissions -0.031***
(0.009)

DTE Industry-Adjusted Forecasted Emissions -0.029***
(0.008)

DTE Ambition Score Cum Constant -0.026***
(0.006)

DTE Ambition Score Cum Forecasted -0.023***
(0.006)

LOGMKTCAP -0.370*** -0.383*** -0.327*** -0.343*** -0.265*** -0.265***
(0.084) (0.081) (0.075) (0.078) (0.063) (0.063)

LOGMB -0.072 -0.068 -0.114 -0.110 -0.141* -0.142*
(0.064) (0.063) (0.070) (0.068) (0.075) (0.075)

LEVERAGE -0.488** -0.507*** -0.432** -0.450** -0.333* -0.333*
(0.167) (0.165) (0.167) (0.166) (0.179) (0.179)

MOM 0.692** 0.695** 0.671** 0.677** 0.651** 0.650**
(0.235) (0.235) (0.234) (0.234) (0.236) (0.236)

INVEST/ASSETS -0.069 -0.018 -0.591 -0.496 -0.679 -0.691
(0.870) (0.877) (0.826) (0.834) (0.831) (0.828)

LOGPPE 0.033 0.038 0.060** 0.061** 0.079** 0.079**
(0.023) (0.025) (0.026) (0.026) (0.027) (0.027)

VOLAT 3.928 3.936 3.932 3.903 4.056 4.050
(4.292) (4.298) (4.301) (4.295) (4.320) (4.319)

DOLVOL -0.007 -0.006 -0.006 -0.005 -0.004 -0.004
(0.010) (0.011) (0.010) (0.011) (0.011) (0.011)

AGE -0.426 -0.357 -0.045 -0.013 0.084 0.087
(0.696) (0.681) (0.627) (0.615) (0.586) (0.586)

Constant 5.097*** 4.876*** 4.119*** 4.134*** 3.041*** 3.000***
(0.601) (0.479) (0.433) (0.410) (0.294) (0.291)

Country-fixed effects Yes Yes Yes Yes Yes Yes
Industry-fixed effects Yes Yes Yes Yes Yes Yes
Year-month-fixed effects Yes Yes Yes Yes Yes Yes
Observations 786,787 786,787 786,787 786,787 786,787 786,787
R-squared 0.142 0.142 0.142 0.142 0.142 0.142
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Table 5: Returns and Lagged DTEs

This table presents the estimation results of equation (2) with lagged DTE signals. The dependent variable is RET measured
monthly. The main independent variables are 12-month lagged DTEs, constructed with different ranking variables, as defined
in Panel C of Table 1. All regressions include the same set of control variables as in Table 4, defined in Panel D of Table 1.
The sample period is 2005-2020. We report the results of the pooled regression model with standard errors (in parentheses)
double clustered at the firm and year levels. All regressions include year-month-fixed effects, country-fixed effects, and Trucost
industry-fixed effects. ***1% significance; **5% significance; *10% significance.

Dependent variable: RET Constant Emissions Forecasted Emissions Ambition Score

(1) (2) (3) (4) (5) (6)

DTE Constant Emissions -0.021***
(0.006)

DTE Industry-Adjusted Constant Emissions -0.018***
(0.006)

DTE Forecasted Emissions -0.003
(0.006)

DTE Industry-Adjusted Forecasted Emissions -0.008
(0.006)

DTE Ambition Score Cum Constant -0.003
(0.004)

DTE Ambition Score Cum Forecasted -0.002
-0.003

Controls Yes Yes Yes Yes Yes Yes
Country-fixed effects Yes Yes Yes Yes Yes Yes
Industry-fixed effects Yes Yes Yes Yes Yes Yes
Year-month-fixed effects Yes Yes Yes Yes Yes Yes
Observations 709,424 709,424 709,424 709,424 709,424 709,424
R-squared 0.148 0.148 0.148 0.148 0.148 0.148
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Table 6: Valuation Ratios and DTEs

This table presents the estimation results of equation (3). The dependent variables are LOGPE in Panel A, LOGMB in Panel
B, and LOGPS in Panel C, all defined in Panel D of Table 1. The main independent variables are DTEs constructed with
different ranking variables, defined in Panel C of Table 1. Control variables include MOM, VOLAT, AGE, and SALESGR,
defined in Panel D of 1. In addition, we include one-year and two year-ahead measures of SALESGR to proxy for future
cash-flow growth. The sample period is 2005-2020. We report the results of the pooled regression with standard errors (in
parentheses) double clustered at the firm and year levels. All regressions include year-month-fixed effects, country-fixed effects,
and Trucost industry-fixed effects. ***1% significance; **5% significance; *10% significance.

Constant Emissions Forecasted Emissions Ambition Score

(1) (2) (3) (4) (5) (6)

Panel A. Dependent Variable: LOGPE

DTE Constant Emissions 0.008***
(0.001)

DTE Industry-Adjusted Constant Emissions 0.006***
(0.001)

DTE Forecasted Emissions 0.005***
(0.001)

DTE Industry-Adjusted Forecasted Emissions 0.004***
(0.001)

DTE Ambition Score Cum Constant 0.004***
(0.001)

DTE Ambition Score Cum Forecasted 0.003***
(0.001)

Observations 499,903 499,903 499,903 499,903 499,903 499,903
R-squared 0.245 0.244 0.244 0.243 0.242 0.242

Panel B. Dependent Variable: LOGMB

DTE Constant Emissions 0.006***
(0.001)

DTE Industry-Adjusted Constant Emissions 0.004***
(0.001)

DTE Forecasted Emissions 0.002**
(0.001)

DTE Industry-Adjusted Forecasted Emissions 0.001
(0.001)

DTE Ambition Score Cum Constant 0.002**
(0.001)

DTE Ambition Score Cum Forecasted 0.002*
(0.001)

Observations 560,288 560,288 560,288 560,288 560,288 560,288
R-squared 0.412 0.412 0.411 0.411 0.411 0.411

Panel C. Dependent Variable: LOGPS

DTE Constant Emissions 0.036***
(0.002)

DTE Industry-Adjusted Constant Emissions 0.025***
(0.002)

DTE Forecasted Emissions 0.023***
(0.003)

DTE Industry-Adjusted Forecasted Emissions 0.017***
(0.002)

DTE Ambition Score Cum Constant 0.007***
(0.002)

DTE Ambition Score Cum Forecasted 0.006***
(0.001)

Observations 566,729 566,729 566,729 566,729 566,729 566,729
R-squared 0.522 0.512 0.505 0.499 0.482 0.482

Controls Yes Yes Yes Yes Yes Yes
Country-fixed effects Yes Yes Yes Yes Yes Yes
Industry-fixed effects Yes Yes Yes Yes Yes Yes
Year-month-fixed effects Yes Yes Yes Yes Yes Yes
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Table 7: Returns and DTEs: Extensive Margin

This table presents the estimation results on the extensive margin. The dependent variable is RET , measured monthly. The
independent variables (EXT s) are transformations of DTEs (as defined in Panel C of Table 1) that are equal to one for
companies that never exit net-zero portfolios, and equal to zero for companies that exit net-zero portfolios at any point prior
to and including the final year 2050. Control variables are the same as in Table 4. The sample period is 2005-2020. We report
the results of the pooled regression with standard errors (in parentheses) double clustered at the firm and year levels. All
regressions include year-month-fixed effects, country-fixed effects, and Trucost industry-fixed effects. ***1% significance; **5%
significance; *10% significance.

Dependent variable: RET Constant Emissions Forecasted Emissions Ambition Score

(1) (2) (3) (4) (5) (6)

EXT Constant Emissions -0.359***
(0.111)

EXT Industry-Adjusted Constant Emissions -0.321***
(0.100)

EXT Forecasted Emissions -0.451***
(0.122)

EXT Industry-Adjusted Forecasted Emissions -0.320***
(0.104)

EXT Ambition Score Cum Constant -0.269**
(0.115)

EXT Ambition Score Cum Forecasted -0.268**
(0.103)

Controls Yes Yes Yes Yes Yes Yes
Country-fixed effects Yes Yes Yes Yes Yes Yes
Industry-fixed effects Yes Yes Yes Yes Yes Yes
Year-month-fixed effects Yes Yes Yes Yes Yes Yes
Observations 864,334 864,334 864,334 864,334 864,334 864,334
R-squared 0.137 0.137 0.137 0.137 0.137 0.137
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Table 8: Returns and DTEs: Paris Agreement

This table presents the estimation results of equation (4). The dependent variable is RET measured monthly. We define an
indicator variable, Paris, that is equal to one for the years starting from 2016, and equal to zero up to and including 2015.
The main independent variables are DTEs, constructed with different ranking variables, as defined in Panel C of Table 1, and
the interaction terms between DTEs and Paris. All regressions include the same set of control variables as in Table 4, defined
in Panel D of Table 1. The sample period is 2005-2020. We report the results of the pooled regression with standard errors (in
parentheses) double clustered at the firm and year levels. All regressions include year-month-fixed effects, country-fixed effects,
and Trucost industry-fixed effects. ***1% significance; **5% significance; *10% significance.

Constant Emissions Forecasted Emissions Ambition Score

(1) (2) (3) (4) (5) (6)

Panel A. Dependent Variable: RET

DTE Constant Emissions -0.043***
(0.011)

DTE Constant Emissions × Paris -0.025***
(0.008)

DTE Industry-Adjusted Constant Emissions -0.030***
(0.009)

DTE Industry-Adjusted Constant Emissions × Paris -0.028***
(0.007)

DTE Forecasted Emissions -0.023**
(0.008)

DTE Forecasted Emissions × Paris -0.021**
(0.009)

DTE Industry-Adjusted Forecasted Emissions -0.019**
(0.008)

DTE Industry-Adjusted Forecasted Emissions × Paris -0.025***
(0.007)

DTE Ambition Score Cum Constant -0.018***
(0.006)

DTE Ambition Score Cum Constant × Paris -0.016
(0.012)

DTE Ambition Score Cum Forecasted -0.016***
(0.005)

DTE Ambition Score Cum Forecasted × Paris -0.016
(0.011)

Controls Yes Yes Yes Yes Yes Yes
Country-fixed effects Yes Yes Yes Yes Yes Yes
Industry-fixed effects Yes Yes Yes Yes Yes Yes
Year-month-fixed effects Yes Yes Yes Yes Yes Yes
Observations 786,787 786,787 786,787 786,787 786,787 786,787
R-squared 0.142 0.142 0.142 0.142 0.142 0.142

Panel B. Dependent Variable: LOGPE

DTE Constant Emissions 0.006***
(0.001)

DTE Constant Emissions × Paris 0.006**
(0.002)

DTE Industry-Adjusted Constant Emissions 0.004***
(0.001)

DTE Industry-Adjusted Constant Emissions × Paris 0.004***
(0.001)

DTE Forecasted Emissions 0.004***
(0.001)

DTE Forecasted Emissions × Paris 0.005***
(0.001)

DTE Industry-Adjusted Forecasted Emissions 0.003***
(0.001)

DTE Industry-Adjusted Forecasted Emissions × Paris 0.003***
(0.001)

DTE Ambition Score Cum Constant 0.004***
(0.001)

DTE Ambition Score Cum Constant × Paris 0.001
(0.001)

DTE Ambition Score Cum Forecasted 0.003***
(0.001)

DTE Ambition Score Cum Forecasted × Paris 0.001
(0.001)

Observations 499,903 499,903 499,903 499,903 499,903 499,903
R-squared 0.246 0.245 0.244 0.243 0.242 0.242

Controls Yes Yes Yes Yes Yes Yes
Country-fixed effects Yes Yes Yes Yes Yes Yes
Industry-fixed effects Yes Yes Yes Yes Yes Yes
Year-month-fixed effects Yes Yes Yes Yes Yes Yes55



Table 9: Returns and DTEs: Controlling for Climate Variables

This table presents the estimation results with additional control variables on climate. The dependent variable is RET measured
monthly. The main independent variables are DTEs constructed with different ranking variables as defined in Panel C of Table
1. In addition to the same set of control variables as in Table 4, we also include Ambition Score, the natural logarithm of
total emissions, LOGCO2, the percentage change in total emissions, Emissions Growth, and emission intensity, Emissions
Intensity, as additional controls in the returns regression model. The sample period is 2005-2020. We report the results of the
pooled regression with standard errors (in parentheses) double clustered at the firm and year levels. All regressions include
year-month-fixed effects, country-fixed effects, and Trucost industry-fixed effects. ***1% significance; **5% significance; *10%
significance.

Dependent variable: RET Constant Emissions Forecasted Emissions Ambition Score

(1) (2) (3) (4) (5) (6)

DTE Constant Emissions -0.011
(0.015)

DTE Industry-Adjusted Constant Emissions -0.018
(0.010)

DTE Forecasted Emissions -0.011
(0.009)

DTE Industry-Adjusted Forecasted Emissions -0.014*
(0.008)

DTE Ambition Score Cum Constant -0.013**
(0.005)

DTE Ambition Score Cum Forecasted -0.012**
(0.004)

Ambition Score 0.056 0.056 0.040 0.035 -0.039 -0.033
(0.134) (0.141) (0.134) (0.136) (0.153) (0.150)

LOGCO2 0.302*** 0.270*** 0.296*** 0.281*** 0.314*** 0.314***
(0.057) (0.045) (0.044) (0.038) (0.034) (0.034)

Emissions Growth 0.245** 0.246** 0.236** 0.234** 0.225** 0.225**
(0.090) (0.089) (0.085) (0.083) (0.085) (0.085)

Emission Intensity -0.014** -0.014** -0.014** -0.014** -0.014*** -0.014***
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Controls Yes Yes Yes Yes Yes Yes
Country-fixed effects Yes Yes Yes Yes Yes Yes
Industry-fixed effects Yes Yes Yes Yes Yes Yes
Year-month-fixed effects Yes Yes Yes Yes Yes Yes
Observations 786,577 786,577 786,577 786,577 786,577 786,577
R-squared 0.142 0.142 0.142 0.142 0.142 0.142
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Table 10: Returns and DTEs: Scope 1 and 2

This table presents the estimation results of equation (2) but with the sum of scope 1 and scope 2 emissions only. The dependent
variable is RET , measured monthly. The main independent variables are DTEs constructed using the same methodology as
those defined in Panel C of Table 1, but excluding scope 3 emissions. We also include the same set of control variables as in
Table 4, defined in Panel D of Table 1. The sample period is 2005-2020. We report the results of the pooled regression with
standard errors (in parentheses) double clustered at the firm and year levels. All regressions include year-month-fixed effects,
country-fixed effects, and Trucost industry-fixed effects. ***1% significance; **5% significance; *10% significance.

Dependent variable: RET Constant Emissions Forecasted Emissions Ambition Score

(1) (2) (3) (4) (5) (6)

DTE Constant Emissions -0.032***
(0.008)

DTE Industry-Adjusted Constant Emissions -0.027***
(0.006)

DTE Forecasted Emissions -0.024***
(0.007)

DTE Industry-Adjusted Forecasted Emissions -0.023***
(0.006)

DTE Ambition Score Cum Constant -0.014***
(0.004)

DTE Ambition Score Cum Forecasted -0.013***
(0.004)

Controls Yes Yes Yes Yes Yes Yes
Country-fixed effects Yes Yes Yes Yes Yes Yes
Industry-fixed effects Yes Yes Yes Yes Yes Yes
Year-month-fixed effects Yes Yes Yes Yes Yes Yes
Observations 786,787 786,787 786,787 786,787 786,787 786,787
R-squared 0.142 0.142 0.142 0.142 0.142 0.142
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Table 11: Returns and DTEs: The Role of Carbon Disclosure

This table presents the estimation results of equation (5). The dependent variable is RET , measured monthly. We define an
indicator variable Disclosure that is equal to one if the company directly discloses its emissions, and it is equal to zero if the
information is estimated by the data provider. The main independent variables are DTEs, constructed with different ranking
variables, as defined in Panel C of Table 1 and the interaction terms between DTEs and Disclosure. We include the same set
of control variables as in Table 4, defined in Panel D of Table 1. The sample period is 2005-2020. We report the results of
the pooled regression with standard errors (in parentheses) double clustered at the firm and year levels. All regressions include
year-month-fixed effects, country-fixed effects, and Trucost industry-fixed effects. ***1% significance; **5% significance; *10%
significance.

Dependent variable: RET Constant Emissions Forecasted Emissions Ambition Score

(1) (2) (3) (4) (5) (6)

DTE Constant Emissions -0.046***
(0.012)

DTE Constant Emissions × Disclosure -0.016**
(0.005)

DTE Industry-Adjusted Constant Emissions -0.037***
(0.010)

DTE Industry-Adjusted Constant Emissions × Disclosure -0.018***
(0.005)

DTE Forecasted Emissions -0.030***
(0.009)

DTE Forecasted Emissions × Disclosure -0.006
(0.004)

DTE Industry-Adjusted Forecasted Emissions -0.027***
(0.009)

DTE Industry-Adjusted Forecasted Emissions × Disclosure -0.009**
(0.004)

DTE Ambition Score Cum Constant -0.032***
(0.008)

DTE Ambition Score Cum Constant × Disclosure 0.017**
(0.006)

DTE Ambition Score Cum Forecasted -0.028***
(0.007)

DTE Ambition Score Cum Forecasted × Disclosure 0.014**
(0.005)

Disclosure 0.222* 0.242** 0.087 0.140 -0.191* -0.164*
(0.116) (0.097) (0.105) (0.096) (0.097) (0.092)

Controls Yes Yes Yes Yes Yes Yes
Country-fixed effects Yes Yes Yes Yes Yes Yes
Industry-fixed effects Yes Yes Yes Yes Yes Yes
Year-month-fixed effects Yes Yes Yes Yes Yes Yes
Observations 786,787 786,787 786,787 786,787 786,787 786,787
R-squared 0.142 0.142 0.142 0.142 0.142 0.142

58



Table 12: Returns and DTEs: Additional Decarbonization Pathways

This table presents the estimation results of equation (2) and equation (3) with alternative portfolio decarbonization pathways.
Pathway ZeroConst assumes investors delay the decarbonization process for a while by applying constant emissions, but then
they follow a faster constant-reduction rate. Pathway SF switches from a slow reduction rate of 1% to a faster reduction rate
that is not larger than 30% after several years. Pathway FS switches from a faster reduction rate to a slow reduction rate of
1%. Pathway denoted RAEM follows the emission mitigation pathway of Andrew (2020). The main independent variables are
DTEs, constructed using the same methodology as in Panel C of Table 1, but under the alternative pathways. The dependent
variable in Panels 1 is RET , measured monthly with the same set of control variables as in Table 4. The dependent variable
in Panels 2 is LOGPE with the same set of control variables as in Table 6. The sample period is 2005-2020. We report the
results of the pooled regression with standard errors (in parentheses) double clustered at the firm and year levels. All regressions
include year-month-fixed effects, country-fixed effects, and Trucost industry-fixed effects. ***1% significance; **5% significance;
*10% significance.

Constant Emissions Forecasted Emissions Ambition Score Constant Emissions Forecasted Emissions Ambition Score

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A1. Dependent Variable: RET. Pathway: Zero Panel A2. Dependent Variable: LOGPE. Pathway: Zero

DTE Constant Emissions -0.077*** 0.006***
(0.018) (0.001)

DTE Industry-Adjusted Constant Emissions -0.060*** 0.005***
(0.011) (0.001)

DTE Forecasted Emissions -0.045*** 0.013***
(0.012) (0.001)

DTE Industry-Adjusted Forecasted Emissions -0.039*** 0.008***
(0.010) (0.001)

DTE Ambition Score Cum Constant -0.037*** 0.009***
(0.009) (0.001)

DTE Ambition Score Cum Forecasted -0.028*** 0.006***
(0.007) (0.001)

Observations 786,787 786,787 786,787 786,787 786,787 786,787 499,903 499,903 499,903 499,903 499,903 499,903
R-squared 0.142 0.142 0.142 0.142 0.142 0.142 0.242 0.242 0.246 0.244 0.245 0.243

Panel B1. Dependent Variable: RET. Pathway: SF Panel B2. Dependent Variable: LOGPE. Pathway: SF

DTE Constant Emissions -0.093*** 0.006***
(0.016) (0.001)

DTE Industry-Adjusted Constant Emissions -0.064*** 0.005***
(0.011) (0.001)

DTE Forecasted Emissions -0.052*** 0.014***
(0.013) (0.002)

DTE Industry-Adjusted Forecasted Emissions -0.040*** 0.009***
(0.010) (0.001)

DTE Ambition Score Cum Constant -0.040*** 0.010***
(0.009) (0.001)

DTE Ambition Score Cum Forecasted -0.029*** 0.006***
(0.007) (0.001)

Observations 786,787 786,787 786,787 786,787 786,787 786,787 499,903 499,903 499,903 499,903 499,903 499,903
R-squared 0.142 0.142 0.142 0.142 0.142 0.142 0.242 0.242 0.247 0.244 0.245 0.243

Panel C1. Dependent Variable: RET. Pathway: FS Panel C2. Dependent Variable: LOGPE. Pathway: FS

DTE Constant Emissions -0.008* 0.003***
(0.004) (0.000)

DTE Industry-Adjusted Constant Emissions -0.017*** 0.003***
(0.003) (0.000)

DTE Forecasted Emissions -0.010** 0.005***
(0.004) (0.001)

DTE Industry-Adjusted Forecasted Emissions -0.015*** 0.004***
(0.004) (0.001)

DTE Ambition Score Cum Constant -0.012*** 0.005***
(0.004) (0.000)

DTE Ambition Score Cum Forecasted -0.011*** 0.004***
(0.004) (0.000)

Observations 786,787 786,787 786,787 786,787 786,787 786,787 499,903 499,903 499,903 499,903 499,903 499,903
R-squared 0.142 0.142 0.142 0.142 0.142 0.142 0.243 0.243 0.242 0.243 0.244 0.243

Panel D1. Dependent Variable: RET. Pathway: RAEM Panel D2. Dependent Variable: LOGPE. Pathway: RAEM

DTE Constant Emissions -0.043*** 0.005***
(0.011) (0.001)

DTE Industry-Adjusted Constant Emissions -0.047*** 0.004***
(0.009) (0.001)

DTE Forecasted Emissions -0.030*** 0.009***
(0.009) (0.001)

DTE Industry-Adjusted Forecasted Emissions -0.029*** 0.006***
(0.008) (0.001)

DTE Ambition Score Cum Constant -0.023*** 0.007***
(0.006) (0.001)

DTE Ambition Score Cum Forecasted -0.019*** 0.005***
(0.005) (0.001)

Observations 786,787 786,787 786,787 786,787 786,787 786,787 499,903 499,903 499,903 499,903 499,903 499,903
R-squared 0.142 0.142 0.142 0.142 0.142 0.142 0.243 0.243 0.244 0.244 0.245 0.244

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year-month-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
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Table IA.1: Correlations between Carbon Emissions, Ambition Score, and DTEs.

This table presents the correlation matrix between carbon emissions, ambition score, and DTEs. The DTEs are constructed using different ranking measures and portfolio
decarbonization pathways. In terms of ranking measures, we consider three sets of DTE measures: (1) two based on constant emissions sort; (2) two based on forecasted
emissions sort; and (3) two based on Ambition Score sort. The first two of the three sets are further divided depending on whether the sorting variable is industry-adjusted or
not. For the Ambition Score sort, we conduct the exclusion by filling the carbon budget using constant emissions and forecasted emissions, respectively. Reagrding pathways,
ZeroConst assumes investors delay the decarbonization process for a while by applying constant emission, but then it assumes a faster constant reduction rate. Pathways SF
switch from a slow reduction rate of 1% to a faster reduction rate that is not larger than 30% after several years. Pathways FS switch from a faster reduction rate to a slow
reduction rate of 1%. Pathways denoted RAEM follow the emission mitigation pathway constructed by Andrew (2020).
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Switch Zero-Const. Reduction Pathway Switch Slow-Fast Reduction Pathway Switch Fast-Slow Reduction Pathway Robbie Andrews Reduction Pathway
Ambition Score 0.10 1.00
Switch Zero-Constant Reduction Pathway
DTE Const. Emissions -0.30 -0.08 1.00
DTE Ind. Adj. Const. Emissions -0.21 -0.09 0.79 1.00
DTE Forecasted emissions -0.31 -0.09 0.89 0.72 1.00
DTE Ind. Adj. Forecasted Emissions -0.23 -0.11 0.68 0.84 0.81 1.00
DTE Ambition Score Cum Const. -0.12 -0.14 0.51 0.57 0.58 0.65 1.00
DTE Ambition Score Cum Forecasted -0.17 -0.16 0.47 0.54 0.58 0.66 0.95 1.00
Switch Slow-Fast Reduction Pathway
DTE Const. Emissions -0.26 -0.07 0.97 0.80 0.87 0.68 0.54 0.49 1.00
DTE Ind. Adj. Const. Emissions -0.19 -0.09 0.79 0.97 0.71 0.82 0.61 0.56 0.82 1.00
DTE Forecasted emissions -0.29 -0.08 0.88 0.73 0.97 0.81 0.61 0.60 0.90 0.75 1.00
DTE Ind. Adj. Forecasted Emissions -0.21 -0.11 0.68 0.83 0.80 0.97 0.68 0.68 0.71 0.86 0.83 1.00
DTE Ambition Score Cum Const. -0.10 -0.15 0.52 0.57 0.58 0.63 0.97 0.92 0.58 0.65 0.63 0.69 1.00
DTE Ambition Score Cum Forecasted -0.16 -0.15 0.49 0.55 0.58 0.65 0.94 0.98 0.53 0.60 0.62 0.70 0.94 1.00
Switch Fast-Slow Reduction Pathway
DTE Const. Emissions -0.50 -0.10 0.63 0.53 0.59 0.48 0.48 0.44 0.63 0.57 0.61 0.52 0.52 0.48 1.00
DTE Ind. Adj. Const. Emissions -0.33 -0.13 0.61 0.69 0.57 0.63 0.54 0.55 0.60 0.68 0.57 0.64 0.55 0.57 0.62 1.00
DTE Forecasted emissions -0.42 -0.10 0.61 0.51 0.67 0.56 0.48 0.48 0.61 0.53 0.66 0.59 0.51 0.50 0.78 0.55 1.00
DTE Ind. Adj. Forecasted Emissions -0.27 -0.12 0.54 0.61 0.66 0.73 0.55 0.58 0.53 0.61 0.64 0.73 0.55 0.59 0.50 0.73 0.62 1.00
DTE Ambition Score Cum Const. -0.22 -0.17 0.44 0.50 0.51 0.58 0.71 0.77 0.44 0.51 0.51 0.58 0.69 0.76 0.45 0.62 0.49 0.64 1.00
DTE Ambition Score Cum Forecasted -0.22 -0.16 0.41 0.48 0.51 0.57 0.69 0.77 0.41 0.48 0.50 0.57 0.65 0.75 0.40 0.59 0.47 0.64 0.94 1.00
Robbie Andrews Reduction Pathway
DTE Const. Emissions -0.36 -0.08 0.89 0.73 0.81 0.64 0.57 0.51 0.90 0.77 0.83 0.68 0.61 0.56 0.79 0.67 0.72 0.57 0.49 0.45 1.00
DTE Ind. Adj. Const. Emissions -0.26 -0.11 0.77 0.91 0.70 0.80 0.62 0.60 0.79 0.92 0.73 0.82 0.65 0.63 0.62 0.81 0.58 0.70 0.58 0.55 0.81 1.00
DTE Forecasted emissions -0.35 -0.10 0.81 0.67 0.90 0.75 0.60 0.58 0.81 0.70 0.89 0.77 0.63 0.61 0.72 0.61 0.82 0.70 0.55 0.53 0.89 0.73 1.00
DTE Ind. Adj. Forecasted Emissions -0.24 -0.11 0.67 0.79 0.79 0.92 0.66 0.68 0.69 0.79 0.81 0.92 0.67 0.70 0.55 0.71 0.64 0.85 0.64 0.63 0.70 0.85 0.81 1.00
DTE Ambition Score Cum Const. -0.16 -0.15 0.51 0.58 0.59 0.66 0.93 0.94 0.55 0.63 0.63 0.71 0.93 0.96 0.51 0.60 0.52 0.61 0.80 0.78 0.60 0.67 0.64 0.72 1.00
DTE Ambition Score Cum Forecasted -0.18 -0.15 0.48 0.55 0.58 0.66 0.88 0.94 0.51 0.59 0.61 0.69 0.87 0.94 0.47 0.59 0.51 0.62 0.83 0.84 0.55 0.64 0.62 0.72 0.97
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Table IA.2: Detailed Summary Statistics of Ambition Score Variables

This table presents further details on the forward-looking sub-components of the Ambition Score. Panel A reports the percentage
of firms with environmentally positive answers to the six ESG variables. Panel B reports the percentage coverage of firms with
green and brown efficiency patents, respectively. Across firms with green (brown efficiency) patents, we also report the average
number of green (brown efficiency) patents registered by a company in a given year, the cumulative number of citations to
green (brown efficiency) patents registered by a company in a given year, and the number of green (brown efficiency) patents
registered by a company in a given year scaled by the total number of patents of the same company in that year. Panel C
reports the number of targets, number of firms with targets, number of firms with targets on Scope 1 emission, number of
firms with targets on Scope 2 emission, number of firms with targets on Scope 3 emission, number of firms with SBTi approved
targets, and number of firms with SBTi committed targets.

Year # Firms Decarbonization
Target

Decarbonization
Policy

Reported
Emissions

CSR
Committee

UNPRI
Signatory

SDG 13
Climate
Action

Panel A: Refinitiv ESG
2006 2510 13.71 14.34 19.20 11.04
2007 2696 20.47 26.34 23.55 16.14
2008 2672 25.56 36.38 27.88 25.11
2009 2789 28.68 39.58 34.60 35.14 0.04
2010 2931 30.16 44.59 40.09 41.73 0.03
2011 3154 30.15 44.67 40.20 42.77 0.03
2012 3328 29.84 46.45 41.71 44.62 0.03
2013 3351 28.98 46.82 43.30 45.33 0.03
2014 3958 24.48 42.62 39.19 39.62 0.03
2015 4280 24.44 43.43 40.14 37.83 0.02
2016 4483 24.09 45.33 42.67 38.46 0.96 0.02
2017 10401 12.05 24.09 22.30 19.76 0.48 0.01
2018 11300 13.61 26.71 24.72 21.24 0.19 0.15
2019 12032 16.15 31.48 28.13 24.70 0.14 11.06
2020 12855 18.41 35.01 29.68 28.41 0.88 18.22

Overall 13277 19.79 34.28 30.94 28.92 0.30 6.67

Year # Firms % Coverage # Patents # Patents
Citations

# Green
Patents to #
Patents Ratio

% Coverage # Patents # Patent
Citations

# Brown
Patents to #
Patents Ratio

Panel B: Patents
Green Patents Brown Efficiency Patents

2006 2510 15.34 8.28 180.46 0.21 8.96 7.17 98.26 0.19
2007 2696 15.80 8.58 144.30 0.22 8.23 7.55 218.47 0.17
2008 2672 17.51 7.87 156.34 0.23 8.12 7.87 69.17 0.17
2009 2789 16.24 8.62 194.62 0.24 7.21 8.47 73.17 0.19
2010 2931 16.58 9.21 200.38 0.24 7.92 7.94 62.86 0.17
2011 3154 15.82 10.86 192.61 0.24 7.80 7.22 69.19 0.19
2012 3328 17.22 11.47 140.82 0.26 7.84 7.50 68.02 0.20
2013 3351 17.07 12.31 140.28 0.26 7.76 8.42 48.89 0.19
2014 3958 16.42 12.81 180.18 0.28 7.40 8.27 52.26 0.18
2015 4280 15.77 12.63 92.87 0.27 7.17 8.25 36.89 0.18
2016 4483 15.77 12.70 140.79 0.27 7.41 8.63 33.26 0.16
2017 10401 8.86 10.71 74.54 0.32 3.71 8.30 21.83 0.21
2018 11300 8.24 10.34 41.39 0.32 3.65 8.08 16.58 0.23
2019 12032 8.38 10.44 26.42 0.34 3.38 7.79 11.79 0.21
2020 12855 7.88 9.26 55.91 0.35 3.08 6.82 10.25 0.21

Overall 13277 11.81 10.56 117.64 0.28 5.31 7.89 53.08 0.19

Year # Firms # Targets Firms with
Valid Target

Firms with
Scope 1
Related
Target

Firms with
Scope 2
Related
Target

Firms with
Scope 3
Related
Target

Firms with
SBTi

Approved
Target

Firms with
SBTi

Considered
Target

Panel C: CDP Targets
2011 3154 389 269 251 243 94
2012 3328 381 264 239 232 76
2013 3351 474 322 295 285 94
2014 3958 558 378 341 335 106
2015 4280 509 356 308 309 97
2016 4483 741 476 424 426 114 103
2017 10401 1027 599 533 532 150 52 113
2018 11300 1119 652 589 594 164 89 182
2019 12032 1335 777 718 715 212 153 201
2020 12855 1451 840 796 791 277 234 266

Overall 13277 7984 1250 1167 1179 457 264 471
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