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Abstract

We develop an endogenous growth model with heterogeneous firms facing finan-

cial frictions, in which misallocation emerges explicitly as a crucial state variable. The

model demonstrates that macroeconomic shocks that affect misallocation can generate

persistent effects on aggregate growth. In equilibrium, the slow-moving misallocation

endogenously generates long-run uncertainty about economic growth by distorting in-

novation decisions. When agents have recursive preferences, the misallocation-driven

low-frequency growth fluctuations lead to significant welfare losses and risk premia

in capital markets. Using an empirical misallocation measure motivated by the model,

we provide evidence that misallocation captures low-frequency fluctuations in both

aggregate growth and stock returns.
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1 Introduction

Misallocation plays an important role in helping us understand economic growth, both
during economic transitions (e.g., Buera and Shin, 2013, 2017) and in the long-run steady
states (e.g., Acemoglu et al., 2018; Peters, 2020). Various firm-level dispersion measures
indicate that the allocation efficiency of capital seems to exhibit cyclical properties (e.g.,
Eisfeldt and Rampini, 2006; Bloom, 2009; Kehrig, 2015; Bloom et al., 2018). The link
between misallocation and growth prospects can potentially shed light on the fundamental
forces that drive low-frequency growth fluctuations, a mechanism that quantitatively
rationalizes many asset pricing moments (e.g., Bansal and Yaron, 2004; Hansen, Heaton
and Li, 2008) and justifies the large welfare cost of business cycles (e.g., Barlevy, 2004).

This paper develops an analytically tractable general-equilibrium model with endoge-
nous stochastic growth to quantitatively investigate the connection between misallocation
and the systematic risk that shapes asset prices in capital markets. As the key insight
of this paper, our model demonstrates that the slow-moving misallocation drives en-
dogenous low-frequency growth fluctuations as a primitive source of systematic risk.
When agents have recursive preferences, the misallocation-driven low-frequency growth
fluctuations can have first-order asset pricing implications in capital markets and lead to
substantial welfare losses.

Our model builds on the framework of Moll (2014) in which there is endogenous
misallocation across firms producing final goods due to financial frictions. We introduce
two additional ingredients. First, in addition to the final goods sector, we introduce
intermediate goods and R&D sectors. By expanding the variety of intermediate goods
used in production, R&D generates technological advances and thus endogenous growth
(Romer, 1990). Second, there are aggregate shocks that drive slow-moving misallocation.

The novel combination of these two ingredients allows the model to generate en-
dogenous low-frequency growth fluctuations. The mechanism is as follows. A higher
misallocation in production capital reduces the aggregate demand for intermediate goods
and thus the profits of innovation. This reduces the R&D sector’s incentive to innovate,
leading to a lower equilibrium growth rate.1 As misallocation is endogenously persis-
tent and slow moving, aggregate shocks that affect misallocation could in turn drive

1Our theoretical mechanism that links misallocation and growth is similar to that in the model of Peters
(2020), where firms’ innovation rates are negatively affected by misallocation (in production labor) through
the aggregate demand for their outputs. This mechanism is different from that of Acemoglu et al. (2018),
who emphasize the role of misallocation in R&D inputs (skilled labor), rather than production inputs, in
determining equilibrium growth.

1



low-frequency growth fluctuations.
Our model economy has three sectors. The innovation sector uses final goods and

existing stock of knowledge to produce new knowledge. The intermediate goods sector
uses the blueprints from the innovation sector together with final goods to produce differ-
entiated intermediate goods. The final goods sector uses capital, labor, and intermediate
goods to produce final goods. There exists a representative agent that owns firms in all
sectors, a continuum of heterogeneous firms in the final goods sector and homogeneous
firms in intermediate goods and innovation sectors.

Firms in the final goods sector are different in productivity and capital. Because of
agency conflicts, firms face an equity market constraint for payout and issuance and a
collateral constraint for debt. The collateral constraint generates capital misallocation
among firms. A higher misallocation results in a lower productivity in the final goods
sector, which reduces the aggregate demand for intermediate goods. This, in turn,
motivates innovators to invent new intermediate goods less intensively, leading to a lower
growth rate.

Firms endogenously choose their capacity utilization intensity. A higher intensity
allows firms to produce more outputs at the cost of bearing a higher depreciation rate
of capital. The only aggregate shock is the capital depreciation shock, as in Storesletten,
Telmer and Yaron (2007), Gourio (2012), and Brunnermeier and Sannikov (2017), etc. In
equilibrium, because firms with higher productivity use their capital more intensively,
they are also more exposed to aggregate capital depreciation shocks than firms with
lower productivity. Thus, the aggregate shocks generate fluctuations in the economy’s
misallocation, which in turn result in fluctuations in the economy’s growth rate.

Our model is a general equilibrium model with heterogeneous firms and aggregate
uncertainty. The standard way to solve this type of models is to do numerical approxima-
tions based on a few moments that summarize the cross-sectional distribution of firms
(e.g., Krusell and Smith, 1998). Instead of following this route, we directly propose a
parametric approximation for the distribution of log productivity and log capital using
a bivariate normal distribution. We justify its validity using the Berry-Esseen bound
(Tikhomirov, 1980; Bentkus, Gotze and Tikhomoirov, 1997) under certain conditions. By
characterizing the distribution of firms using a few moments, our parametric approxima-
tion is in spirit similar to standard methods of numerical approximations. We discuss the
connections in Online Appendix 2.2. To show robustness, we also compare our results
with the results solved by numerical approximations (see Online Appendix 2).
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The proposed parametric approximation provides two major benefits. First, it allows
us to derive a closed-form expression for the misallocation of capital in the final goods
sector, which emerges as a crucial and explicit endogenous state variable that summarizes
the cross-sectional distribution of firms. Specifically, misallocation in our model can be
characterized by the covariance between log marginal revenue product of capital (MRPK)
and log capital, normalized by the variance of log MRPK. This covariance-type measure
of misallocation is intuitive, and similar measures have been implemented in empirical
studies to gauge capital allocation efficiency (e.g., Olley and Pakes, 1996; Bartelsman,
Haltiwanger and Scarpetta, 2009, 2013). Second, it makes the model highly tractable
and transparent. The evolution of the model economy can be analytically characterized
by the evolution of two endogenous state variables, misalloation and the knowledge
stock-capital ratio. This enables us to elucidate the relationship between the dynamics of
misallocation and the dynamics of aggregate growth.

To illustrate the key theoretical mechanism, we first focus on the balanced growth
in the absence of aggregate shocks. We show that a one-time shock that increases
misallocation can have an overly persistent effect on economic growth. Specifically,
due to financial frictions, the reallocation of capital across firms takes time. Thus,
the one-time shock not only increases contemporaneous misallocation, but also future
misallocation. In other words, misallocation is slow moving and persistent. Because
misallocation determines economic growth through R&D incentive, the persistently high
misallocation further generates a persistently low economic growth. Taken together, a
one-time (temporary) shock brings a persistent effect on economic growth. We further
show that the persistence of misallocation and growth is closely related to the persistence
of firms’ idiosyncratic productivity. This complements the key insight of Moll (2014)
that when firms’ idiosyncratic productivity becomes more persistent, it takes a longer
time for the economy to reach the steady state. For us, the persistence of idiosyncratic
productivity determines the persistence of aggregate growth through its effect on the
persistence of endogenous misallocation.

Building on this mechanism, we show that in the full model with aggregate shocks,
misallocation is slow moving, thereby generating low-frequency growth fluctuations.
Quantitatively, the yearly autocorrelation of misallocation is 0.73 and that of consumption
growth is 0.46, both of which are similar to what we measure in the data. Thus, our model
demonstrates a novel channel through which business cycle fluctuations are endogenously
associated with low-frequency growth fluctuations. This provides a misallocation-based
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explanation for the observed low-frequency covariation in the time series of consumption
growth and output growth (e.g., Bansal, Dittmar and Lundblad, 2005; Hansen, Heaton
and Li, 2008; Müller and Watson, 2008, 2018).

We further show that the model is able to rationalize several important asset pricing
moments and imply large welfare costs of business cycles. Specifically, our model implies
a high Sharpe ratio of 0.39 and a smooth risk-free rate, as in the data. The representative
agent would experience a welfare gain of about 10% if consumption fluctuations are
eliminated. The large quantitative effects generated by misallocation fluctuations hinge
on two properties of the model, the low-frequency growth fluctuations driven by the
slow-moving misallocation and the recursive preference of the representative agent. We
show that if misallocation does not affect economic growth or if it is not sufficiently
slow moving to generate low-frequency growth fluctuations, both of the quantified
Sharpe ratio and welfare gain would be very small. Moreover, if the representative
agent has a standard (non-recursive) preference with constant relative risk aversion
(CRRA), these two values would also be very small. Intuitively, the recursive preference
ensures that the representative agent’s marginal utility today is affected not only by
news about contemptuous consumption growth, but also, crucially, by news about future
consumption growth. Thus, innovations in future consumption growth can generate
valuation effects through the pricing kernel. In addition, because consumption growth is
persistent, a temporary innovation in consumption growth would generate a persistent
effect in future, which significantly amplifies the impacts of future consumption growth
on the marginal utility today.

While our main contribution is theoretical, we also empirically test the main predic-
tions of our model. Motivated by our theory, we construct a misallocation measure based
on the covariance between log MRPK and log capital using the U.S. Compustat data. We
show that the misallocation measure is persistent, with a yearly autocorrelation of 0.75.
Moreover, the value of our empirical measure of misallocation increases during economic
downturns. We further show that an increase in misallocation predicts declines in R&D
intensity and lower growth of aggregate consumption and output over long horizons.

Although our model does not focus on cross-sectional asset pricing implications,
we provide evidence in the cross section to support the main theoretical mechanism.
First, we show that, as a macroeconomic factor, the empirical misallocation measure has
significant cross-sectional asset pricing implications. A two-factor model with market
and misallocation factors prices size, book-to-market, momentum, and bond portfolios
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with a mean absolute pricing error (MAPE) of 1.46, which is even lower than that implied
by the Fama-French three-factor model. Importantly, future accumulated consumption
growth, as a proxy for the low-frequency component of consumption growth that is
shown to contain important asset pricing information, would have little importance
in explaining asset returns once our misallocation measure is taken into account as
a factor. Second, we find that the cash flows of value firms load more negatively on
misallocation than the cash flows of growth firms. This is consistent with the robust
evidence found in the asset pricing literature that the cash flows of value firms load
more positively on accumulated consumption growth than those of growth firms (Bansal,
Dittmar and Lundblad, 2005; Parker and Julliard, 2005; Hansen, Heaton and Li, 2008;
Santos and Veronesi, 2010), providing further support for our model’s key mechanism
that fluctuations in misallocation drive the low-frequency growth fluctuations.

Finally, we provide direct evidence to support the model’s mechanism that misal-
location drives long-run growth through its impact on R&D. We consider the policy
shock from the American Jobs Creation Act (AJCA) passed in 2004, which presumably
relaxes the financial constraints of firms with pre-tax income from abroad. By exploiting
industries’ differential exposure to this policy shock in a difference-in-differences (DID)
setting, we find that AJCA results in significantly lower industry-level misallocation
and higher R&D expenditure in treated industries. Moreover, the impact of AJCA on
industry-level R&D expenditure becomes statistically insignificant after controlling for
industry-level misallocation.

Related Literature. Our paper is related to several strands of the literature. First,
we contribute to the asset pricing literature. Various theoretical studies provide micro
foundations to justify low-frequency growth fluctuations (e.g., Ai, 2010; Kaltenbrunner
and Lochstoer, 2010; Garleanu, Panageas and Yu, 2012; Croce, 2014; Kung and Schmid,
2015; Collin-Dufresne, Johannes and Lochstoer, 2016; Ai, Li and Yang, 2020; Gârleanu
and Panageas, 2020; Croce, Nguyen and Raymond, 2021). Our paper is mostly related to
Kung and Schmid (2015) who show that R&D endogenously drives a small, persistent
component in productivity, which generates long-run uncertainty about economic growth.
Our model’s main departure from their model is that the aggregate TFP is determined by
cross-sectional misallocation whereas it is exogenous in their model. This difference allows
our theory to rationalize low-frequency growth fluctuations through the equilibrium
interactions between endogenous slow-moving misallocation and R&D incentives, a
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mechanism supported by the data.
Second, our paper contributes to the large and growing literature that emphasizes the

role of misallocation in economic development (e.g., Banerjee and Duflo, 2005; Foster,
Haltiwanger and Syverson, 2008; Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009;
Jones, 2011, 2013; Bartelsman, Haltiwanger and Scarpetta, 2013; Asker, Collard-Wexler
and Loecker, 2014a; König et al., 2022; Edmond, Midrigan and Xu, 2023; Glode and
Ordonez, 2023). Our paper is particularly related to the literature on financial frictions
and misallocation. The bulk of this literature focuses on the long-run TFP and welfare
losses of misallocation in the deterministic stationary equilibrium (e.g., Amaral and
Quintin, 2010; Greenwood, Sanchez and Wang, 2010, 2013; Caselli and Gennaioli, 2013;
Midrigan and Xu, 2014; Buera, Kaboski and Shin, 2015) whereas a few papers also analyze
transitional dynamics (e.g., Jeong and Townsend, 2007; Buera and Shin, 2013; Moll, 2014;
Gopinath et al., 2017).2 Our paper develops a stochastic growth model in which the
slow-moving misallocation endogenously drives low-frequency growth cycles. On the
technical side, our model extends the tractable framework of Moll (2014) with intermediate
inputs, R&D, and aggregate shocks to generate endogenous stochastic growth. Our paper
provides the following insights to the literature. First, the misallocation in the final goods
sector can affect economic growth because it determines the profits of R&D through the
aggregate demand. This mechanism is similar to Peters (2020), but for us, misallocation
arises from financial frictions rather than markup dispersions. Second, when agents have
recursive preferences, the misallocation caused by financial frictions can generate large
risk premia and welfare losses through endogenous low-frequency growth fluctuations.
Third, the persistence of firm-level idiosyncratic productivity plays an important role
in generating the slow-moving misallocation, which in turn, generates low-frequency
growth fluctuations.3 Our results complement the key insight of Moll (2014), who shows
that as idiosyncratic productivity becomes more persistent, the transition speed from a
distorted initial state to the steady state is slower, resulting in potentially larger welfare
losses during transitions.

2Several papers measure the importance of financing costs in generating misallocation. For example,
Gilchrist, Sim and Zakrajsek (2013) find a limited role of the costs of debt based on a sample that consists
of about 500 firms issuing corporate bonds, most of which are large firms. David, Schmid and Zeke (2022)
find a more important role played by the costs of equity in generating misallocation. Whited and Zhao
(2021) find significant variation in the costs of debt and equity across U.S. firms.

3By connecting the persistence in idiosyncratic productivity with the persistence in aggregate consump-
tion growth, our model implies that low-frequency growth fluctuations can be identified using granular
firm-level data, which potentially helps address the issues of weak identification in the asset pricing
literature (Chen, Dou and Kogan, 2022; Cheng, Dou and Liao, 2022).
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Relative to the macro-development literature, much less work focuses on the role of
misallocation in the finance literature.4 Our paper is most related to David, Schmid and
Zeke (2022), who analyze the implications of macroeconomic risk for misallocation. Our
paper complements their work by analyzing the implications of misallocation for macroe-
conomic risk. Specifically, our model demonstrates that the economy’s misallocation itself
can be a macroeconomic risk factor as it enters the investors’ pricing kernel by affecting
consumption growth, whereas their model takes an exogenous pricing kernel to analyze
its impacts on the economy’s misallocation.

Finally, our paper is related to the literature on the welfare cost of business cycles (e.g.,
Lucas, 1987). Barlevy (2004) shows that business cycles can generate large welfare losses
by affecting the growth rate of consumption through capital investment. Alvarez and
Jermann (2004) estimate a large welfare gain from eliminating consumption uncertainty
using asset prices. Through the slow-moving misallocation, our model rationalizes low-
frequency growth fluctuations, implying a large welfare cost of business cycles when the
representative agent has recursive preferences.

2 Model

There are three sectors: a final goods sector, an intermediate goods sector, and an R&D
sector. There is a representative agent that owns firms in all sectors, a continuum of
heterogeneous firms in the final goods sector and homogeneous firms in the intermediate
goods and R&D sectors.

2.1 Final Goods Sector

In the final goods sector, there is a continuum of firms of measure one, indexed by
i ∈ I ≡ [0, 1] and operated by managers. Firms are different from each other in their
idiosyncratic productivity zi,t and capital ai,t. At each point in time t, the distribution of
firms is characterized by the joint probability density function (PDF), ϕt(a, z).

The firm produces output at intensity yi,t over [t, t+dt) using a production technology

4E.g., Eisfeldt and Rampini (2006, 2008b), Rampini and Viswanathan (2010), Opp, Parlour and Walden
(2014), Fuchs, Green and Papanikolaou (2016), Ehouarne, Kuehn and Schreindorfer (2017), van Binsbergen
and Opp (2019), Ai, Li and Yang (2020), Ai et al. (2020), and Lanteri and Rampini (2021).
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with constant returns to scale (CRS):

yi,t =
[
(zi,tui,tki,t)

α`1−α
i,t

]1−ε
xε

i,t, with α, ε ∈ (0, 1), (1)

where labor `i,t is hired in a competitive labor market at the equilibrium wage wt. The
variable ki,t = ai,t + âi,t is the capital installed in production, which includes the firm’s
own capital ai,t and the leased capital âi,t borrowed from a competitive rental market at
the equilibrium risk-free rate r f ,t.5 The final goods are the numeraire.

The firm’s output increases with its idiosyncratic productivity zi,t and endogenous
choice of capacity utilization intensity ui,t ∈ [0, 1]. Utilizing capital at intensity ui,t leads
to an amount of ui,tki,td∆t depreciation over [t, t + dt), where d∆t captures the stochastic
depreciation rate,

d∆t = δkdt + σkdWt. (2)

The standard Brownian motion Wt captures the aggregate capital depreciation shock
(e.g., Storesletten, Telmer and Yaron, 2007; Albuquerue and Wang, 2008; Gourio, 2012).
The parameters δk, σk > 0 capture the constant and stochastic components of capital
depreciation. As we show in Lemma 1 below, in equilibrium, more productive firms
utilize capital more intensively by optimally choosing larger ui,t. As a result, more
productive firms are more exposed to the aggregate depreciation shock dWt than less
productive firms.6

We assume that the firm’s own capital stock evolves according to

dai,t = −δaai,tdt + σa,tai,tdWt + dIi,t, (3)

where δa > 0 is the constant depreciation rate, and σa,tai,tdWt captures improvements in
capital efficiency. We assume that a single aggregate shock dWt enters both equations (2)
and (3) mainly for tractability. This implies that improvement in the efficiency of new
capital is associated with depreciation of existing capital, capturing the displacement
effect of new capital (e.g., Gârleanu, Kogan and Panageas, 2012; Kogan et al., 2017; Kogan,
Papanikolaou and Stoffman, 2020).7 The variable dIi,t in equation (3) is the amount of

5The capital leasing market is relevant for firms’ production and financial decisions (e.g., Eisfeldt and
Rampini, 2008a; Rampini and Viswanathan, 2013; Li and Tsou, 2021).

6The only role of utilization intensity ui,t is to endogenously generate differential exposure to the aggre-
gate shocks in the cross section of firms, so that dWt will have an impact on the economy’s misallocation.
The same results can be obtained if we exogenously specify the aggregate risk exposure across firms.

7The modeling of capital efficiency shocks has been widely adopted in the literature, e.g., Sundaresan
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final goods that is converted to capital over [t, t + dt). Similar to Pástor and Veronesi
(2012), we assume that profits are reinvested, so that the firm’s investment rate dIi,t is
equal to its profit after paying operation expenses, interests, and dividends (see equation
(19) below). As we show in Section 3.2, the aggregate shock dWt generates time variation
in misallocation of production capital in the final-goods sector, enabling us to study the
asset pricing implications of misallocation.8

The composite xi,t in equation (1) consists of differentiated intermediate goods, given
by the constant elasticity of substitution (CES) aggregation:

xi,t =

(∫ Nt

0
xν

i,j,tdj
) 1

ν

, (4)

where xi,j,t is the quantity of intermediate goods j ∈ [0, Nt]. The elasticity of substitu-
tion among differentiated intermediate goods is 1/(1− ν) > 0. The economy’s stock
of knowledge (i.e., the variety of differentiated intermediate goods created based on
existing blueprints) at t is Nt. Technological advances through the expansion of Nt drive
endogenous growth, as in Romer (1987, 1990) and Jones (1995).

The firm’s idiosyncratic productivity zi,t evolves according to

d ln(zi,t) = −θ ln(zi,t)dt + σ
√

θdWi,t, (5)

where the standard Brownian motion Wi,t captures idiosyncratic shocks to firm i’s pro-
ductivity. The specification of the idiosyncratic process zi,t is similar to that of Moll
(2014). The parameter θ determines the persistence of idiosyncratic productivity zi,t. A
higher θ makes zi,t less persistent, implying that firms face higher uncertainty in their
future idiosyncratic productivity. Importantly, a change in θ does not affect the dispersion
in idiosyncratic productivity across firms, because θ scales both the drift term and the
diffusion term in equation (5).

(1984), Cox, Ingersoll and Ross (1985), Kogan (2001, 2004), Gourio (2012), Di Tella (2017), and Dou (2017).
8Other aggregate shocks can also generate time variation in misallocation. For example, the aggregate

shocks to firms’ financial constraints considered by Jermann and Quadrini (2012). However, Jermann
and Quadrini (2012) show that financial shocks cannot generate persistent macroeconomic effects unless
the shocks themselves are calibrated to be persistent. The aggregate shock dWt in our model directly
affects firms’ capital. Because capital accumulation is a gradual process, even with our i.i.d. shocks, the
macroeconomic effects can be persistent.
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2.2 Intermediate Goods Sector

There is a continuum of intermediate goods producers, indexed by j ∈ [0, Nt]. Each
producer j has monopoly power in setting prices, facing a downward sloping demand
for its output. It buys final goods and transform them to intermediate inputs, based
on the blueprints created by firms in the R&D sector. We assume that one unit of final
goods can be transformed into one unit of intermediate goods, meaning that the marginal
cost of producing intermediate goods is unity. Denote by pj,t and pt the prices of the
intermediate good j and the composite of intermediate goods, respectively. The producer
of intermediate good j solves

max
pj,t

πj,t = pj,tej,t − ej,t, (6)

subject to the demand curve:

ej,t =

(
pj,t

pt

) 1
ν−1

Xt, (7)

where Xt ≡
∫

i∈I xi,tdi is the aggregate demand for the composite of intermediate goods.
The value of a blueprint, denoted by vj,t, is the value of owning the exclusive rights

to produce intermediate good j, which is given by the Hamilton-Jacobi-Bellman (HJB)
equation:

0 = Λt
(
πj,t − δbvj,t

)
dt + Et

[
d(Λtvj,t)

]
, (8)

where Λt is the SDF, and δb is the hazard rate at which an existing blueprint becomes
obsolete. Because of symmetry and homogeneity, all blueprints have identical values,
vj,t ≡ vt, and all intermediate good producers make identical flow profits, πj,t ≡ πt.

2.3 R&D Sector

Intermediate goods producers are competitive and do not make profits in equilibrium.
They buy blueprints from innovators at the price vt. That is, innovators have full
bargaining power and seize all the surplus vt. Thus, vt is the value of creating the
blueprint, which shapes the incentive to innovate.

Blueprints are created by conducting R&D using final goods. The stock of knowledge
Nt evolves as follows:

dNt = ϑtStdt− δbNtdt, (9)
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where δb is the patent obsolescence rate, St is the aggregate R&D expenditure, and
ϑt captures the productivity of innovations, which is taken as exogenously given by
individual innovators. In equilibrium, the free-entry condition implies that the marginal
return of R&D is equal to its marginal cost:

vtϑt = 1. (10)

Following Comin and Gertler (2006) and Kung and Schmid (2015), we specify

ϑt = χ

(
Nt

St

)h
, (11)

where h ∈ (0, 1). Equation (11) implies that there are positive spillovers of the aggregate
stock of knowledge (the term Nh

t ) as in Romer (1990) and Jones (1995), and that aggregate
R&D investment has decreasing marginal returns (the term S−h

t ), capturing the congestion
effect in developing new blueprints.

2.4 Agents

There is a continuum of agents, which include workers and managers. As in Dou (2017),
only managers decide firms’ investments and operations. The managers can be executives,
directors, and entrepreneurs; more broadly, they can also be the controlling shareholders
who are fully entrenched and have complete control over firms’ investment and payout
policies (e.g., Albuquerue and Wang, 2008). Each manager manages a firm in the final
goods sector subject to agency problems. Workers lend funds to firms and hold equity
claims on all firms. We assume that a full set of Arrow-Debreu securities is available to
agents, so that idiosyncratic consumption risks can be fully insured and there exists a
representative agent.

Preferences. The representative agent has stochastic differential utility as in Duffie and
Epstein (1992):

U0 = E0

[∫ ∞

0
f (Ct, Ut)dt

]
, (12)

where

f (Ct, Ut) =

(
1− γ

1− ψ−1

)
Ut

[(
Ct

[(1− γ)Ut]1/(1−γ)

)1−ψ−1

− δ

]
. (13)
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This preference is a continuous-time version of the recursive preferences proposed by
Kreps and Porteus (1978), Epstein and Zin (1989), and Weil (1990). The felicity function f
is an aggregator over the current consumption rate Ct of final goods and future utility
level Ut. The coefficient δ is the subjective discount rate, the parameter ψ is the elasticity
of intertemporal substitution (EIS), and the parameter γ captures risk aversion.

The representative agent maximizes utility (12) subject to the following budget con-
straint:

dBt =
(
wtLt + r f ,tBt + Dt − Ct

)
dt, (14)

where wtLt is the wage income intensity, Dt is the dividend intensity of all firms, and Bt

is the amount of bonds held by the representative agent at t. The aggregate labor supply
is inelastic and normalized to be Lt ≡ 1.

The representative agent’s SDF is

Λt = exp
(∫ t

0
fU(Cs, Us)ds

)
δ

1−γ

1−ψ−1 R
γ−ψ−1

1−ψ−1

t C−γ
t , (15)

where Rt is the consumption-wealth ratio of the representative agent.

Limited Enforcement. An equity market constraint for payout/issuance and a credit
market collateral constraint for borrowing endogenously arise from limited enforcement
problems of equity and debt contracts.

The manager extracts pecuniary rents τai,tdt over [t, t + dt) when running the firm i.9

These rents represent the cash compensation above the manager’s wage (e.g., Myers, 2000;
Lambrecht and Myers, 2008, 2012). Shareholders have the option to intervene and take
control of the firm by replacing the manager. Intervention is costly because it requires
collective action (e.g., Myers, 2000) and can damage the firm’s talent-dependent customer
capital (e.g., Dou et al., 2020b). In particular, we assume that a fraction τ/ρ of capital
ai,t is lost upon intervention with τ < ρ, after which shareholders will become the new
manager of the firm. In equilibrium, the manager will pay dividend up to the point
where shareholders would have no incentive to intervene, implying a payout intensity

9Managers can extract rents because corporate governance is imperfect. In practice, it is difficult to
verify the cash flows generated by firms’ assets, even though cash flows are observable and shareholders’
property rights to firm assets are protected. For example, it is difficult to distinguish and verify rents and
business expenses. The rents here do not include nonpecuniary private benefits, such as prestige from
empire building (Eisfeldt and Rampini, 2008b).
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policy di,t = ρai,t over [t, t + dt).10

Moreover, the installed capital for production is ki,t = ai,t + âi,t, and the manager
can divert a fraction 1/λ of leased capital âi,t with λ ≥ 1. As a punishment, the firm
would lose his own capital ai,t. In equilibrium, the manager is able to borrow up to the
point where the manager has no incentive to divert leased capital, implying a collateral
constraint âi,t ≤ λai,t. The same form of collateral constraints is widely adopted in the
literature (e.g., Jermann and Quadrini, 2012; Buera and Shin, 2013; Moll, 2014).

The financial frictions are summarized in the following proposition.

Proposition 1. Because of the agency problem with limited enforcement, the firm’s payout/issuance
policy is subject to the following equity market constraint:

di,t = ρai,t; (16)

moreover, the firm’s leased capital is subject to the following collateral constraint:

− ai,t ≤ âi,t ≤ λai,t. (17)

Several points are worth further discussions. First, other agency problems can give
rise to above equity market and collateral constraints, e.g., Gertler and Kiyotaki (2010);
Gertler and Karadi (2011). Second, the equity market constraint is widely studied in
the corporate finance literature (e.g., Myers, 2000; Lambrecht and Myers, 2008, 2012).
It essentially implies that shareholders cannot freely move funds in and out of firms.
Third, our analytically tractable formulation of capital market imperfections captures the
fact that external funds available to a firm are limited and costly. Fourth, one specific
interpretation of inter-firm borrowing and lending is the existence of a competitive rental
market in which firms can rent capital from each other (e.g., Jorgenson, 1963; Hall and
Jorgenson, 1969; Buera and Shin, 2013; Rampini and Viswanathan, 2013; Moll, 2014).

Managers’ Problem. The manager of firm i makes leasing (âi,s) and production (ui,s, `i,s, xi,j,s)
decisions for all s ≥ t to maximize the present value Ji,t of his own rents as in Lambrecht

10Technically, because the firm’s dividend intensity is a constant fraction of its capital, the model has
linear solutions and tractable aggregation. This property follows the model of Moll (2014) in which the
entrepreneur has log utility and CRS technology, and as a result, his consumption intensity is a constant
fraction of his wealth.
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and Myers (2008, 2012),

Ji,t = max
âi,s,ui,s,`i,s,xi,j,s

Et

[∫ ∞

t

Λs

Λt
τai,sds

]
, (18)

subject to the equity market constraint (16), the collateral constraint (17), and the intertem-
poral budget constraint (3) with dIi,t given by

dIi,t = yi,tdt−
∫ Nt

0
pj,txi,j,tdjdt− wt`i,tdt− ui,tki,td∆t − r f ,t âi,tdt− di,tdt, (19)

where the SDF Λt evolves according to

dΛt

Λt
= −r f ,tdt− ηtdWt. (20)

The variable ηt is the endogenous market price of risk. Because the technology, budget
constraint, and collateral constraint are all linear in ai,t, the value Ji,t is also linear in ai,t

with the following form:
Ji,t ≡ Jt(ai,t, zi,t) = ξt(zi,t)ai,t, (21)

where ξi,t ≡ ξt(zi,t) captures the marginal value of capital to the manager, which depends
on the firm’s idiosyncratic productivity zi,t and the aggregate state of the economy. The
variable ξi,t evolves as follows:

dξi,t

ξi,t
= µξ,t(zi,t)dt + σξ,t(zi,t)dWt + σw,t(zi,t)dWi,t, (22)

where µξ,t(zi,t), σξ,t(zi,t), and σw,t(zi,t) are endogenously determined in equilibrium.
Exploiting the homogeneity of Ji,t in capital ai,t, we obtain the manager’s optimal

decisions, summarized in Lemma 1.

Lemma 1. Factor demands and profits are linear in capital, and there is a productivity cutoff zt
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for being active:

ut(z) =

{
1, z ≥ zt

0 z < zt
, kt(a, z) =

{
(1 + λ)a, z ≥ zt

0 z < zt
(23)

`t(a, z) =
[
(1− α)(1− ε)

wt

] 1
α
(

ε

pt

) ε
α(1−ε)

zut(z)kt(a, z), (24)

xj,t(a, z) =
(

pj,t

pt

) 1
ν−1

xt(a, z), for all j ∈ [0, Nt], (25)

where pt is the price index and xt(a, z) is the demand for the composite of intermediate goods,

pt =

(∫ Nt

0
p

ν
ν−1
j,t dj

) ν−1
ν

, (26)

xt(a, z) =
(

ε

pt

) 1−(1−α)(1−ε)
α(1−ε)

[
(1− α)(1− ε)

wt

] 1−α
α

zut(z)kt(a, z). (27)

The productivity cutoff zt is determined by:

ztκt = r f ,t + δk + σk(σξ,t(zt)− ηt). (28)

where κt is

κt = α(1− ε)

(
ε

pt

) ε
α(1−ε)

[
(1− α)(1− ε)

wt

] 1−α
α

. (29)

At any point in time t, only firms with productivity above zt produce, and these firms
rent the maximal amount âi,t = λai,t allowed by the collateral constraint. Equations (25)
to (27) are standard results of CES aggregation. The productivity cutoff zt is determined
by equation (28), where the marginal return, ztκt, is equal to the marginal cost of leased
capital, r f ,t + δk + σk

(
σξ,t(zt)− ηt

)
, which includes the locally deterministic user cost of

capital and the term σk
(
σξ,t(zt)− ηt

)
, reflecting the firm’s exposure to aggregate risk.

Using Lemma 1, equation (19) can be simplified as11

dIi,t = (1 + λ)
(
κtzi,tdt− d∆t − r f ,tdt

)
ai,t1zi,t≥zt + (r f ,t − ρ)ai,tdt. (30)

11As in Moll (2014), the drift term in capital accumulation is proportional to the firm’s capital ai,t. This
is a direct consequence of the constant payout ratio (16) and the constant-returns-to-scale production
technology (1) for a fixed Nt.

15



2.5 Equilibrium and Aggregation

The dividend intensity Dt is given by

Dt = ρAt +
∫ Nt

j=0
πj,tdj− St, (31)

where At is the aggregate capital held by firms in the final goods sector, given by

At =
∫ ∞

0

∫ ∞

0
aϕt(a, z)dadz. (32)

In equation (31), the first term ρAt captures the dividend of the final goods sector. The
second term

∫ Nt
j=0 πj,tdj captures the profits from the intermediate goods sector and the

third term St captures the expenditure on R&D. The aggregate capital Kt in the economy
is

Kt =
∫ ∞

0

∫ ∞

0
kt(a, z)ϕt(a, z)dadz. (33)

Definition 2.1 (Competitive Equilibrium). At any point in time t, the competitive equilibrium
of the economy consists of prices wt, r f ,t, and

{
pj,t
}Nt

j=0, and corresponding quantities, such that

(i) firms in the final goods sector maximize (18) by choosing âi,t, ui,t, `i,t, and xi,j,t, subject to
(16), (17), and (19), given equilibrium prices;

(ii) intermediate goods producers maximize (6) by choosing pj,t for j ∈ [0, Nt];

(iii) the equilibrium R&D expensiture St is determined by equation (10);

(iv) the SDF Λt is given by equation (15) and the risk-free rate r f ,t is determined by

r f ,t = −
1
dt

Et

[
dΛt

Λt

]
; (34)

(v) the labor market-clearing condition determines wt:

Lt =
∫ ∞

zt

∫ ∞

0
`t(a, z)ϕt(a, z)dadz; (35)

(vi) the leased capital market-clearing condition determines the representative agent’s bond
holdings Bt:

Bt =
∫ ∞

0

∫ ∞

0
ât(a, z)ϕt(a, z)dadz. (36)
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The aggregate capital is the sum of capital in the final goods sector and bonds

Kt = At + Bt. (37)

(vii) the resource constraint is satisfied because of Walras’s law (see Online Appendix 3.1).

Because managers’ problem is linear in capital ai,t (see equation (21)), it is not necessary
to track the marginal distribution of capital conditional on each productivity type z.12

We thus follow Moll (2014) and introduce the capital share ωt(z) to fully characterize the
distribution of firms in the final goods sector:

ωt(z) ≡
1
At

∫ ∞

0
aϕt(a, z)da. (38)

Intuitively, the capital share ωt(z) plays the role of a density, and it captures the share of
firms’ capital held by each productivity type z. We define the analogue of the correspond-
ing cumulative distribution function (CDF) as

Ωt(z) ≡
∫ z

0
ωt(z′)dz′. (39)

To ensure well-behaved equilibrium growth, as in standard growth models, we need
output Yt to be homogenous of degree one in the accumulating factors Nt and Kt, i.e.,
(1−ν)ε
ν(1−ε)

+ α = 1, as in Kung and Schmid (2015). For the rest of the paper, we assume this
parameter restriction.

Proposition 2. At any point in time t ≥ 0, given the capital share ωt(z), the equilibrium
aggregate output is

Yt = ZtKα
t L1−α

t , (40)

where Zt is the economy’s TFP, given by

Zt = (εν)
ε

1−ε HtN1−α
t with Ht =

[∫ ∞
zt

zωt(z)dz

1−Ωt(zt)

]α

. (41)

The variable Ht captures the endogenous productivity of the final goods sector. The equilibrium

12In fact, similar to the model of Moll (2014), the marginal distribution of capital is not stationary due to
the constant-returns-to-scale production technology.
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Kt/At ratio is determined by the productivity cutoff zt in equation (28):

Kt/At = (1 + λ) [1−Ωt(zt)] . (42)

Factor prices are

pj,t =1/ν, for all j ∈ [0, Nt], and pt = N
ν−1

ν
t /ν, (43)

wt =(1− α)(1− ε)Yt/Lt, (44)

where κt in equation (29) is simplified to κt = α(1− ε)H−
1
α

t Yt/Kt. The aggregate profits of the
intermediate goods sector and R&D expenditure are

Ntπt = (1− ν)εYt, (45)

St = (χvt)
1
h Nt. (46)

Equation (40) shows that the economy’s aggregate TFP is (εν)
ε

1−ε HtN1−α
t , which

depends on the knowledge stock Nt and the productivity Ht of the final goods sector. A
higher Ht increases the demand for intermediate goods through equation (7), and thus the
incentive to innovate. This, in turn, increases growth rate of Nt and hence the growth rate
of aggregate TFP. In equation (41), Ht is the average firm-level productivity z weighted by
the capital share ωt(z).13 The equilibrium productivity cutoff zt is determined directly by
the CDF of capital share (see equation (42)) due to the bang-bang solution in equation
(23). The value of Ht is higher when more productive firms are associated with more
capital, which reflects a more efficient capital allocation across firms.

Equation (43) is a direct consequence of homogeneous intermediate goods producers
facing the a constant elasticity of substitution, 1/(1− ν). Equation (44) implies that
the equilibrium wage is competitive, given by the labor share, (1− α)(1− ε), in the
production function times the aggregate per-capita output, Yt/Lt. In the intermediate
goods sector, equation (45) implies that the aggregate profit flow, Ntπt, equals the
share of intermediate goods in aggregate output, εYt, multiplied by the profitability of

13The formula (41) is related to the industry-level TFP formula derived by Hsieh and Klenow (2009). The
key difference is that in our model, firms in the final goods sector produce homogeneous goods. But firms
in the model of Hsieh and Klenow (2009) produce differentiated goods. In Online Appendix 3.3, we show
that by driving the elasticity of substitution among goods to infinity and wedges to zero, the industry-level
TFP formula of Hsieh and Klenow (2009) coincides with our productivity Ht in equation (41).
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intermediate-goods producers, as captured by the inverse of the elasticity of substitution,
1 − ν, among differentiated intermediate goods. In equation (46), innovators’ R&D
expenditure increases with the value of blueprints vt with an elasticity of 1/h.

3 Model Solution and Mechanism

In this section, we present the model solutions to highlight the key mechanism of the
model. In Section 3.1, we propose an parametric approximation of the model using
parametric functions to represent the distribution of firms. Under this approximation,
we derive an endogenous state variable that intuitively captures the misallocation of the
model economy. In Sections 3.2 and 3.3, we characterize the evolution of the economy
in the presence of aggregate shocks and the balanced growth path in the absence of
aggregate shocks, respectively. Finally, in Section 3.4, we focus on the balanced growth
path to illustrate the key theoretical mechanism: a one-time shock has a persistent effect
on misallocation, which in turn generates a persistent effect on aggregate growth.

3.1 Parametric Approximation: Misallocation as A State Variable

The capital share ωt(z) is crucial in determining the final goods sector’s productivity Ht

in equation (41), whose value reflects the misallocation of capital. As in the model of
Moll (2014) and many other general-equilibrium models with heterogeneous agents, the
capital share is an infinite-dimensional object that evolves endogenously.

We propose a parametric approximation of ωt(z) for three purposes: First, it yields
a simple endogenous state variable that intuitively captures the misallocation of capital
in the final goods sector; second, it allows us to elucidate the relationship between the
dynamics of misallocation and the dynamics of aggregate growth in a transparent way,
shedding light on the key theoretical mechanism that generates low-frequency growth
fluctuations; and third, it allows us to analytically characterize the evolution of the model
economy, making the computation of model dynamics highly tractable.14

Our idea of using tractable parametric approximations to deliver key model mecha-
nisms is in spirit similar to several important works in the finance literature. For example,

14To evaluate the accuracy of our parametric approximation, we show in Online Appendix 2 that, under
our baseline calibration, the approximation yields solutions sufficiently close to the solutions of numerical
methods that directly track the evolution of ωt(z) using higher-order moments in both the balanced growth
path and the stochastic steady state.
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Campbell and Shiller (1988b) propose log-linear present value approximations to decom-
pose the impact of discount-rate news and cash-flow news on stock valuations. Gabaix
(2007, 2012) develops the class of “linearity-generating” processes to achieve analytical
convenience when revisiting a set of macro-finance puzzles. In Online Appendix 2.2, we
provide detailed discussions for the relationship between our parametric approximation
method and the numerical approximation methods developed in the literature (e.g.,
Krusell and Smith, 1998; Winberry, 2018).15

Specifically, at any point in time t ≥ 0, we approximate the distribution of log capital
ãi,t = ln ai,t and log productivity z̃i,t = ln zi,t across firms in the final goods sector using
a bivariate normal distribution. This approximation is intuitive because according to
equation (5), ln zi,t across firms follows a normal distribution, z̃i,t ∼ N(0, σ2/2), in the sta-
tionary equilibrium. Moreover, using the Berry-Esseen bound, we can heuristically show
that ãi,t across firms approximately follows a normal distribution (see Online Appendix
2.1). This joint-normality assumption allows us to derive a closed-form representation for
the capital share ωt(z) as follows.

Proposition 3. For any t ≥ 0, the capital share ωt(z) can be approximated by the PDF of a
log-normal distribution,

ωt(z) =
1

zσ
√

π
exp

[
− (ln z + σ2Mt/2)2

σ2

]
, (47)

where Mt ≡ −Cov(z̃i,t, ãi,t)/var(z̃i,t) = −2Cov(z̃i,t, ãi,t)/σ2.

Proposition 3 implies that under our approximation, the endogenous state variable
Mt ≡ −Cov(z̃i,t, ãi,t)/var(z̃i,t) is a sufficient statistic that characterizes ωt(z). We further
characterize the economy’s TFP Zt in closed form.

Proposition 4. Under our approximation, the TFP Zt is

Zt = (εν)
ε

1−ε N1−α
t

[
(1 + λ)

At

Kt
exp

(
−σ2

2
Mt +

σ2

4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

)]α

,

(48)
15Briefly, our parametric approximation method is similar to these numerical approximation methods in

terms of using a few moments to summarize the infinite-dimensional cross-sectional distribution of agents
or firms. However, the difference is that our method directly imposes the parametric functional form to
characterize the distribution at any point in time, which allows us to derive closed-form equations for the
evolution of these moments. By contrast, in the numerical approximation methods, these moments are
obtained by numerically fitting the distribution using the parametric functional form and as a result, the
evolution of these moments is not characterized in closed form.
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where Φ(·) represents the CDF of a standard normal variable. The productivity cutoff zt is

zt = exp
[
−σ2

2
Mt −Φ−1

(
1

1 + λ

Kt

At

)
σ√
2

]
. (49)

Equation (48) shows that the economy’s TFP Zt strictly decreases with the state
variable Mt. Thus, the state variable Mt reflects the degree of misallocation in our model
economy. In fact, Mt captures the distribution of MRPK. To elaborate, substituting out
labor and intermediate inputs in firms’ technology using Lemma 1, we obtain

yi,t = qi,tki,t, (50)

where qi,t = (ε/pt)
ε

α(1−ε) [(1− α)(1− ε)/wt]
1−α

α zi,t. Because final goods are the numeraire,
qi,t measures firm i’s MRPK at t. Define q̃i,t = ln qi,t. We obtain a theoretically motivated
measure for misallocation:

Mt ≡ −
Cov(z̃i,t, ãi,t)

var(z̃i,t)
= −Cov(q̃i,t, ãi,t)

var(q̃i,t)
. (51)

In our model, the covariance between productivity and capital, Cov(z̃i,t, ãi,t), is similar
to the covariance between MRPK and capital, Cov(q̃i,t, ãi,t), because firms produce ho-
mogeneous goods using a constant-returns-to-scale production technology.16 Intuitively,
a higher Mt implies that firms with higher productivity zi,t or MRPK qi,t are associated
with less capital ai,t, resulting in a lower aggregate TFP according to Proposition 4.

Relation to Existing Empirical Measures of Misallocation. Our model-implied mis-
allocation measure Mt is similar to the capital allocation efficiency measure based on
the covariance between size and productivity (e.g., Olley and Pakes, 1996; Bartelsman,
Haltiwanger and Scarpetta, 2009, 2013).17 The state variable Mt constructed in equation

16This relationship does not hold in the model of Hsieh and Klenow (2009) because firms produce
differentiated goods with different prices in their model.

17Olley and Pakes (1996) decompose the total productivity into the unweighted average of plant level
productivities and the sample covariance between productivity and output share; they argue that the
latter captures capital allocation efficiency because a higher covariance implies that a higher share of
output goes to more productive firms. Bartelsman, Haltiwanger and Scarpetta (2009, 2013) generalize this
measure by focusing on the covariance between firm-level log productivity and size, where productivity
is measured by physical TFP, revenue TFP, or labor productivity and size is measured by the amount of
physical output, revenue, or input. They show that the size-productivity relationship carries over to these
alternative measures of size and productivity in a class of models.
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(51) provides a theoretical justification for using the size-productivity covariance as a
measure of capital allocation efficiency. In particular, our model analytically characterizes
that a higher Mt (i.e., a lower covariance) reduces aggregate TFP (see equation (48)).
Moreover, under the parametric approximation of our model economy, Mt sufficiently
summarizes the cross-sectional distribution of firms, ωt(z), which highlights the crucial
role played by this state variable.

The covariance-type measure for misallocation is essentially similar to the dispersion
measures used in the misallocation literature, such as the dispersion of revenue TFP or
MRPK (e.g., Foster, Haltiwanger and Syverson, 2008; Hsieh and Klenow, 2009; David and
Venkateswaran, 2019) because they all gauge the impacts of capital allocation efficiency on
aggregate TFP and rest on the same fundamental presumption that allocation is distorted
if the marginal revenue product of a production factor is not equal to its marginal
cost. Bartelsman, Haltiwanger and Scarpetta (2013) provide suggestive evidence that
the size-productivity relationship is more robust to multiplicative measurement errors
than dispersion measures because these classical measurement errors directly increase
the standard deviation of measured MRPK but do not change the measured covariance.
Relatedly, Eisfeldt and Shi (2018) argue that the productivity dispersion measures are
noisy and thus, these measures may not be informative for measuring the business cycle
variation in misallocation frictions. These concerns are especially relevant for our paper,
given the purpose is to understand the asset pricing implications of misallocation in the
context of business cycles. Thus, in Section 4.1, we construct a model-consistent empirical
measure for misallocation based on the covariance-type measure Mt in equation (51).

We make two additional remarks on the misallocation measure Mt motivated by our
model. First, for tractability, our model builds on Moll (2014) and assumes that firms in
the final goods sector use constant-returns-to-scale technology to produce homogeneous
goods. Thus, the most efficient allocation is to move all capital to firms with the highest
productivity, which is unbounded. Although the first-best allocation is not well defined in
our model, Mt is still a valid measure for misallocation due to its monotonic relationship
with aggregate TFP and output (see equation (48)). This is enough for our purpose
because we focus on the time-variation in Mt and its implications for asset prices. Second,
the dispersion measure is not a valid measure for misallocation in our model because
firms use constant-returns-to-scale technology to produce homogeneous goods. Under
this specification, the dispersion in revenue TFP or MRPK is simply proportional to the
dispersion in physical TFP (i.e., the standard deviation of zi,t), which is exogenous and
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constant in the stationary equilibrium due to equation (5).

3.2 Evolution of the Economy

Under the parametric approximation, the economy’s transitional dynamics are character-
ized by the evolution of aggregate capital At in the final goods sector, knowledge stock
Nt, and misallocation Mt, as summarized in the proposition below.18

Proposition 5. Under our parametric approximation, for all t ≥ 0, the economy is fully charac-
terized by the evolution of aggregate capital At in the final goods sector, knowledge stock Nt, and
misallocation Mt, as follows

dAt =α(1− ε)Ytdt− (δkKt + δa At) dt− r f ,tBtdt− ρAtdt− (σkKt − σa,t At)dWt, (52)

dNt =χ (χvt)
1−h

h Ntdt− δbNtdt, (53)

dMt =− θMtdt− Cov(z̃i,t, dãi,t)

var(z̃i,t)
, (54)

where Cov(z̃i,t, dãi,t) is given by equation (76) in Online Appendix 1.6. Define Et = Nt/At as
the knowledge stock-capital ratio. Because the economy is homogeneous of degree one in At, the
three state variables (At, Nt, Mt) can be further reduced to two state variables (Et, Mt).

In equation (52), the accumulation of At over [t, t + dt) is given by the capital share,
α(1 − ε), in the production function times the aggregate output, Ytdt, minus capital
depreciation, (δkKt + δa At)dt, interests on bonds, r f ,tBtdt, and dividend payout, ρAtdt.
The last term (σkKt − σa,t At)dWt captures the variation in At due to aggregate shocks. As
the purpose of this model is to theoretically demonstrate the asset pricing implications of
misallocation, we seek to establish a clean setting without confounding effects from other
channels. Thus, we adopt a technical specification, σa,t = Kt/Atσk. This specification
ensures that the evolution of aggregate capital stock is locally deterministic. Thus, eco-
nomic fluctuations in our model are purely driven by the variation in misallocation Mt in
equation (54), allowing us to cleanly analyze the role of Mt. By ruling out other channels,
the technical specification will overstate the quantitative effect of misallocation. Having
this caveat in mind, we emphasize that the purpose of our quantitative analysis in Section
4 is not to structurally identify the component of misallocation-driven growth fluctuations.

18The variables Kt andBt are not state variables because they are determined by (37) and (42), given At.
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Instead, our goal is to demonstrate that under a reasonable calibration, the slow-moving
misallocation has the capacity to generate low-frequency growth fluctuations, which in
turn rationalize the high Sharpe ratio in the capital market and generate large welfare
costs.

In equation (53), the accumulation of knowledge stock Nt increases with the value of
blueprints vt because a higher vt motivates innovators to increase R&D expenditure St

(equation (46)). Importantly, the misallocation Mt determines the economy’s endogenous
growth rate over [t, t + dt). This is because vt equals the present value of profit flow πt

(equation (8)), and thus vt is higher when πt is higher. A lower misallocation Mt increases
the economy’s TFP Zt (equation (48)), leading to a higher aggregate output Yt (equation
(40)) and thus a higher profit flow πt (equation (45)), and ultimately, a higher growth rate
of the economy. By linking the final goods sector and the innovation sector through the
endogenous TFP Zt, the allocation of capital ai,t among firms of different productivity zi,t

plays a crucial role in determining economic growth.
Equation (54) shows that the evolution of Mt depends on two terms. The first

term −θMtdt reflects time-varying productivity zi,t evolving according to equation (5).
Intuitively, a higher θ implies a less persistent idiosyncratic productivity zi,t, which pushes
the misallocation Mt = −Cov(z̃i,t, ãi,t)/var(z̃i,t) towards zero, making Mt less persistent.
The second term Cov(z̃i,t, dãi,t)/var(z̃i,t) captures the impact of capital accumulation, dãi,t,
evolving according to equation (3). A higher Cov(z̃i,t, dãi,t) implies that more productive
firms accumulate their capital at a higher rate, which reduces misallocation Mt.

Importantly, the variable Cov(z̃i,t, dãi,t) negatively depends on the aggregate shock
dWt (see equation (76) in Online Appendix 1.6). Intuitively, a positive shock (dWt > 0)
increases the depreciation rate of capital ki,t, which reduces the capital accumulation of
more productive firms (i.e., zi,t ≥ zt) but not those less productive firms (i.e., zi,t < zt),
which do not produce (see equation (23)). As a result, a positive shock leads to a lower
Cov(z̃i,t, dãi,t) and increases the misallocation Mt, which in turn reduces aggregate output
and consumption, indicating that Mt is countercyclical.

3.3 Balanced Growth Path

To clearly illustrate the equilibrium relationship between misallocation and long-run
growth, we characterize the economy’s balanced growth path in the absence of aggregate
shocks (i.e., dWt ≡ 0).
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Proposition 6. There is a balanced growth path in which Et ≡ E, Mt ≡ M, and Ht ≡ H are
constant. The aggregate capital At, knowledge stock Nt, output Yt, TFP Zt, and consumption Ct

grow at the same constant rate g, and their ratios are constant.

The values of these variables and the long-run growth rate g are determined by a
system of equations presented in Online Appendix 1.7. The next proposition clearly
shows that, in the balanced growth path, there is a negative relationship between the
R&D-capital ratio S/A and misallocation M.

Proposition 7. Under our parametric approximation, the R&D-capital ratio, S/A, is negatively
related to misallocation M in the balanced growth path,
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In the presence of aggregate shocks, the negative relationship between R&D-capital
ratio and misallocation characterized in Proposition 7 still holds. Because R&D is the
driving force of economy growth in our model, a higher misallocation leads to a lower
growth rate through its negative effect on R&D. Moreover, because aggregate shocks
dWt affect misallocation Mt (equation (54)), the economy’s growth rate is time varying,
depending on its misallocation Mt.

3.4 Key Mechanism: Persistence of Misallocation and Growth

In this section, we focus on the balanced growth path characterized in Section 3.3 to clearly
illustrate the key theoretical mechanism of the model. We show that a one-time shock
has a persistent effect on misallocation Mt, which in turn generates a persistent effect on
aggregate growth through its impact on R&D-to-capital ratio (Proposition 7), the driving
force of economic growth. Further, we show that the persistence of aggregate growth
depends on the persistence of misallocation, which largely depends on the persistence of
idiosyncratic productivity.

Impulse Response Function. Consider a one-time unexpected shock, which reduces
the misallocation Mt exogenously at t = 0. The blue solid lines in Figure 1 plot the
transitional dynamics of several major variables for t ≥ 0 under our benchmark calibration
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Note: Consider an unexpected shock that reduces misallocation Mt by σ[Mt] = 0.09 at t = 0. Panels
A, B, and C plot the transitional dynamics of misallocation Mt, excess consumption Ct/(C0egt), and
contemporaneous consumption growth rate dCt/(Ctdt) when θ is calibrated at different values. For each
choice of θ, we recalibrate the parameter χ so that the consumption growth rate in the balanced growth path
is the same as our baseline calibration. All other parameters are set according to our calibration in Table 1.
Panels D, E, and F plot the transitional dynamics of final goods sector’s productivity Ht, R&D-capital ratio
St/At, and knowledge stock-capital ratio Et = Nt/At for the baseline calibration with e−θ = 0.85.

Figure 1: Transitional dynamics after a one-time shock in misallocation Mt.

(see Table 1). To make the quantitative effects informative, the size of the shock is set at
0.09, corresponding to the standard deviation of Mt under our calibration. Panel A shows
that misallocation Mt declines immediately at t = 0 and slowly recovers and reaches the
steady-state level after about 20 years.

In the absence of aggregate shocks, aggregate consumption would be C0egt, growing
at a constant annualized rate g = 1.75% for all t ≥ 0. We take out the trend effect in
Ct by focusing on excess consumption, defined by Ct/(C0egt). The blue solid line in
panel B shows that excess consumption Ct/(C0egt) stays at one before the shock, and
it immediately jumps to about 1.015 when the shock hits at t = 0, and continues to
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increase until reaching the balanced growth path. Even though the shock is transitory,
the economy converges to a steady state with permanently higher consumption due to
the endogenous accumulation of capital At and knowledge stock Nt.

Panel C illustrates a similar idea by plotting the contemporaneous consumption
growth rate over [t, t + dt), defined by dCt/(Ctdt). The blue solid line shows that the
consumption growth rate increases dramatically to about 1.98% when the shock hits
at t = 0. This is because the reduction in misallocation Mt immediately increases the
productivity Ht of the final goods sector (panel D). A higher Ht increases the profits of
innovators, motivating them to spend more on R&D (panel E), which consequently leads
to a higher growth rate of the economy. Crucially, it is the persistence in misallocation
Mt (panel A), through its impact on R&D, that results in persistent excess consumption
growth relative to the balanced growth path (panels B and C). Panel F plots the evolution
of the knowledge stock-capital ratio Et = Nt/At, which has hump-shaped dynamics
because we only introduce a one-time shock in Mt at t = 0.

Role of the Persistence of Idiosyncratic Productivity. As shown in equation (54), the
persistence of misallocation depends on the parameter θ, which governs the persistence
of idiosyncratic productivity zi,t. To further illustrate that the relationship between the
persistence of misallocation and the persistence of aggregate consumption growth, we
study the transitional dynamics under different values of θ. Specifically, according to
equation (5), the yearly autocorrelation in ln zi,t is e−θ . In panels A, B and C of Figure 1, we
compare our baseline calibration with e−θ = 0.85 to two alternative calibrations in which
the yearly autocorrelation in ln zi,t is 0.9 (black dashed line) and 0.95 (red dash-dotted
line), respectively.

Panel A shows that the calibration with a higher persistence of zi,t is associated with
lower misallocation Mt in the balanced growth path, which follows the insight of Buera
and Shin (2011) and Moll (2014). Importantly, the convergence speed of Mt decreases
with the persistence of zi,t. We compute the half-life of transitions, defined as the time
required for Mt to recover to half of its long-run value after the shock. The half life of
Mt is 3.0, 4.2, and 6.9 years for e−θ = 0.85, 0.9, and 0.95, respectively, indicating that
misallocation becomes more persistent when idiosyncratic productivity is more persistent.
Comparing the three curves in panels B and C, it is clear that the economy with a higher
persistence of zi,t has more persistent consumption growth after the shock in Mt.

Thus, our model suggests that the persistence of idiosyncratic productivity, zi,t, plays
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an important role in determining the persistence of the growth rate of aggregate con-
sumption, dCt/(Ctdt). The persistence of these two variables is connected with each
other via the persistent endogenous misallocation Mt. This result generalizes the key
insight of Moll (2014) to an economy with stochastic growth. In a model without long-run
growth or aggregate shocks, Moll (2014) shows that transitions to steady states are slower
when idiosyncratic productivity shocks become more persistent. Building on this insight,
we further show that in a model with endogenous stochastic growth, the persistence of
idiosyncratic productivity determines the persistence of aggregate growth through its
effect on the persistence of endogenous misallocation. With a proper calibration of θ, this
theoretical mechanism allows our model to quantitatively rationalize endogenous low-
frequency growth fluctuations through slow-moving misallocation, thereby generating a
high Sharpe ratio in the capital market (see Section 4.4) and significant welfare losses of
misallocation fluctuations (see Section 4.5).

4 Quantitative Analysis

In this section, we study the quantitative implications of misallocation for economic
growth, asset prices, and welfare. Section 4.1 constructs an empirical measure of misal-
location motivated by our model. Section 4.2 calibrates and validates the model based
on macroeconomic and asset pricing moments. Section 4.3 shows that in both the data
and model, misallocation significantly predicts R&D expenditure and future economic
growth. Section 4.4 sheds light on the asset pricing implications of misallocation. Finally,
Section 4.5 quantifies the costs of misallocation-driven growth fluctuations.

4.1 Data and Empirical Measures

We obtain annual consumption and GDP data from the U.S. Bureau of Economic Analysis
(BEA) and stock return data from the Center for Research in Security Prices (CRSP).
Consumption and output growth are measured by the log growth rate of per-capita
real personal consumption expenditures on nondurable goods and services and the log
growth rate of per-capita real GDP. The nominal variables are converted to real terms
using the consumer price index (CPI), obtained from CRSP. We obtain data on private
business R&D investment from the National Science Foundation (NSF) and the R&D
stock from the Bureau of Labor Statistics (BLS). These two time series are considered as
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empirical counterparts for St and Nt, respectively. The ratio of the two (i.e., St/Nt) is our
empirical measure for R&D intensity. The risk-free rate is constructed using the yield of
3-month Treasury Bills, obtained from CRSP. Firms’ dividend yield is computed as the
ratio of total dividend over market capitalization, obtained from Compustat.

Empirical Measure of Misallocation. We construct a model-consistent empirical mea-
sure of misallocation according to equation (51), Mt = −Cov(q̃i,t, ãi,t)/var(q̃i,t). Specifi-
cally, we regress the empirical measure of log capital ãi,t on log MRPK q̃i,t using the cross
section of firms in each year t in U.S. Compustat data from 1965 to 2016:19

ãi,t = αt + βtq̃i,t + εi,t, (56)

where the estimated coefficient β̂t directly captures Cov(q̃i,t, ãi,t)/var(q̃i,t). The empir-
ical measure of Mt is constructed using the HP-filtered time-series of −β̂t from 1965
to 2016 with a smoothing parameter of 100 (Backus and Kehoe, 1992). The HP filter
allows us to extract the cyclical component, following the literature (e.g., Eisfeldt and
Rampini, 2006). In the regression specification (56), the empirical measure for log cap-
ital ãi,t is constructed using the average log capital of firm i over the past T years, i.e.,
ãi,t ≡ T−1 ∑T

τ=1 ln(capitali,t+1−τ), with T = 3. The empirical results are robust to alterna-
tive choices of T. Firm i’s capital is measured by its net property, plant and equipment, i.e.,
capitali,t = ppenti,t.20 We construct the empirical measure for q̃i,t using the average log
MRPKi,t of firm i over the past T years, i.e., q̃i,t ≡ T−1 ∑T

τ=1 ln(MRPKi,t+1−τ). According
to equation (50), we measure MRPKi,t using MRPKi,t = salei,t/production_capitali,t. Fol-
lowing the model, production_capitali,t is measured by the sum of the firm’s own capital
(ppenti,t) and rented capital. We measure the amount of rented capital by capitalizing
rental expenses, following standard accounting practice and the literature (e.g., Rauh and
Sufi, 2011; Rampini and Viswanathan, 2013). Specifically, firm i’s rented capital in year t
is its total rental expenses in the year multiplied by a factor 10 and capped by a fraction,

19Because our theory mainly applies to manufacturing firms, we exclude firms from financial, utility,
public administration, and non-tradable industries, where non-tradable industries are defined according to
Mian and Sufi (2014). The empirical results are robust if non-tradable industries are included in the sample.

20 All the empirical results are robust if we use a firm’s tangible net worth to construct its capital, i.e.,
capitali,t = tangible_net_worthi,t. A firm’s tangible net worth is constructed as tangible_net_worthi,t =
ppenti,t + current_assetsi,t + other_assetsi,t− total_liabilitiesi,t. As emphasized by Chava and Roberts (2008),
lenders commonly use a firm’s tangible net worth to assess its ability to support and pay back loans.
Naturally, tangible net worth, as a measure for firms’ borrowing capacity, is widely reflected in loan
covenants (e.g., DeAngelo, DeAngelo and Wruck, 2002; Roberts and Sufi, 2009; Sufi, 2009; Prilmeier, 2017).
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0.25, of ppenti,t.21

Panel A of Figure 2 plots the time series of year-on-year changes in the empirical
measure of misallocation. The shaded areas represent periods of economic downturns,
including economic recessions and three financial crises.22 The value of our empirical
measure of misallocation increases sharply, in 7 of the 9 economic downturns. This
stylized pattern is consistent with the model’s prediction that misallocation generally
increases during a period of time with macroeconomic recessions or financial turmoil.

In panel B of Figure 2, we compare the empirical measure of misallocation Mt (the
blue solid line) with the smoothed earnings-price ratio (the black dashed line) proposed
by Campbell and Shiller (1988a). The smoothed earnings-price ratio is commonly used
as an empirical proxy for the aggregate discount rate (e.g., Dou, Ji and Wu, 2021, 2022)
and its time-series variation roughly has business cycle frequency. Clearly, the empirical
measure of misallocation Mt is much more persistent than the smoothed earnings-price
ratio. The yearly autocorrelation of Mt is 0.75, which is close to the calibrated persistence
of 0.77 by Bansal and Yaron (2004) for the predictable component of consumption growth.
If misallocation Mt affects economic growth, as suggested by our model, the highly per-
sistent and volatile Mt seems to capture the low-frequency growth fluctuations, referred
to as the medium-term business cycle by Comin and Gertler (2006) or the growth cycle by
Kung and Schmid (2015).

4.2 Calibration and Validation of the Model

Panel A of Table 1 presents externally calibrated parameters. Following the standard
practice, we set the capital share in the production technology at α = 0.33. We set the
yearly capital depreciation rates at δk = δa = 3%. We set the share of intermediate inputs
at ε = 0.5 according to the estimates of Jones (2011, 2013). The inverse markup is set
at ν = ε/(ε + (1− α)(1− ε)) = 0.6 to guarantee the existence of a balanced growth
path. Following the standard practice in asset pricing literature, we set the risk aversion
at γ = 8. Following Kung and Schmid (2015), we set the EIS at ψ = 1.85, the patent
obsolescence rate at δb = 15%, and h = 0.17 so that the elasticity of new blueprints with
respect to R&D is 0.83. We set the volatility of idiosyncratic productivity at σ = 1.39

21All empirical results are robust if we use a factor 5, 6, or 8 to capitalize rental expenses or cap the
amount by a fraction, 0, 0.5, 1, or 2, of ppenti,t.

22These are the savings and loan (S&L) crisis from January 1986 to December 1987, the Mexican peso
crisis from January 1994 to December 1995, and the European sovereign debt crisis from September 2008 to
December 2012.

30



Note: Panel A plots the year-on-year changes in the empirical measure of misallocation, i.e., ∆Mt. The
shaded areas represent recessions or severe financial crises. Panel B plots the time series of Mt (left y-axis)
and smoothed earnings-price ratio (right y-axis) proposed by Campbell and Shiller (1988a).

Figure 2: Time series plot of the empirical measure of misallocation Mt.

according to the calibration of Moll (2014). We set the persistence of idiosyncratic
productivity at θ = 0.1625, which implies that the log idiosyncratic productivity has
a yearly autocorrelation of e−θ = 0.85, consistent with the estimate of Asker, Collard-
Wexler and Loecker (2014b) based on U.S. census data as well as the calibration in the
macroeconomics literature (e.g., Khan and Thomas, 2008; Moll, 2014; Winberry, 2018,
2021). We set the collateral constraint parameter at λ = 1.1, which is within the range of
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Table 1: Parameter calibration and targeted moments.

Panel A: Externally determined parameters

Parameter Symbol Value Parameter Symbol Value

Capital share α 0.33 Capital depreciation rate δk, δa 0.03

Share of intermediate inputs ε 0.5 1− R&D elasticity h 0.17

EIS ψ 1.85 Risk aversion γ 8

Patent obsolescence rate δb 0.15 Vol. of idio. productivity σ 1.39

Inverse markup ν 0.6 Rent extraction rate τ 0.01

Collateral constraint λ 1.1 Persistence of idio. productivity θ 0.1625

Panel B: Internally calibrated parameters and targeted moments

Parameter Symbol Value Moments Data Model

Subjective discount rate δ 0.01 Real risk-free rate (%) 1.11 1.58

R&D productivity χ 1.35 Consumption growth rate (%) 1.76 1.75

Capital depreciation shock σk 0.19 Consumption growth vol. (%) 1.50 1.67

Dividend payout rate ρ 0.037 Dividend yield (%) 2.35 2.14

the calibration in the macroeconomics literature (e.g., Jermann and Quadrini, 2012; Buera
and Shin, 2013; Midrigan and Xu, 2014; Moll, 2014; Dabla-Norris et al., 2021). The rent
extraction rate τ is a scaling parameter whose value does not affect firm decisions. We
normalize it at τ = 1%.

The remaining parameters are calibrated by matching the relevant moments sum-
marized in Panel B of Table 1. When constructing the model moments, we simulate a
sample for 1, 000 years with a 100-year burn-in period, which is long enough to guarantee
the stability of these moments. The discount rate is set at δ = 0.01 to generate a real
risk-free rate of about 1.58%. The R&D productivity is set at χ = 1.35 to generate an
average consumption growth rate of about 1.75%. Following Storesletten, Telmer and
Yaron (2007), we calibrate σk = 0.19 so that the model-implied volatility of consumption
growth is about 1.66%. We set the payout rate at ρ = 3.7% so that the dividend yield is
2.14%.

Table 2 presents untargeted moments as a validation test of the model. Panel A
shows that the moments reflecting the persistence of consumption growth implied by
the model are roughly consistent with those in the data even though these moments are
not directly targeted in our calibration. Panel B shows that the yearly autocorrelation of
R&D expenditure growth ∆ ln St and misallocation Mt also have comparable values in
the model and data. The model implies a smooth risk-free rate and a high Sharpe ratio of
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Table 2: Untargeted moments in the data and model.

Moments Data Model Moments Data Model

Panel A: Consumption moments

AC1(∆ ln Ct) (%) 0.44 0.46 AC2(∆ ln Ct) (%) 0.08 0.28

AC5(∆ ln Ct) (%) −0.01 0.00 AC10(∆ ln Ct) (%) 0.06 −0.06

VR2(∆ ln Ct) (%) 1.52 1.46 VR5(∆ ln Ct) (%) 2.02 2.21

Panel B: Other moments

AC1(∆ ln St) (%) 0.30 0.42 AC1(Mt) (%) 0.75 0.73

SR[Rw,t] 0.36 0.39 σ[r f ,t] (%) 2.06 0.47

Note: With slight abuse of notations, ∆ ln Xt = ln Xt − ln Xt−1 represents difference in ln Xt between
year t and year t− 1, where the yearly value of Xt is computed by integrating Xtdt in continuous time.
ACk(∆ ln Ct) refers to the autocorrelation of log consumption growth with a k-year lag. VRk(∆ ln Ct)
refers to the variance ratio of log consumption growth with a k-year horizon. AC1(∆ ln St) is the yearly
autocorrelation of log private business R&D investment growth. AC1(Mt) is the yearly autocorrelation of
misallocation Mt. SR[Rw,t] = E[Rw,t − r f ,t]/σ[Rw,t − r f ,t] is the Sharpe ratio of the consumption claim.

the consumption claim, consistent with Sharpe ratio of the market portfolio in our data
sample. We discuss the mechanisms that generate asset pricing implications in Section
4.4.

4.3 Misallocation, R&D and Growth

Our model implies that misallocation affects R&D intensity, which determines growth.
Thus, the highly persistent empirical measure of misallocation Mt can be covarying with
the slow-moving component of expected growth. In this section, we study the relationship
between misallocation, R&D and growth. Rather than emphasizing Mt as a predictor
for growth, our goal is to provide evidence that Mt captures the low-frequency growth
fluctuations based on predicative regressions over long horizons.

In panel A of Table 3, we study the relationship between misallocation Mt and R&D
intensity. In both the data and model (i.e., simulated data), we regress R&D intensity in
the current year (t) and the next year (t + 1) on misallocation Mt, as follows:

St+h
Nt+h

= α + βMt + νt+h, (57)

where h = 0, 1. The results indicate that a higher misallocation is associated with a decline
in contemporaneous R&D intensity and predicts a lower R&D intensity in the next year.
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Table 3: Misallocation, R&D, and growth in the data and model.

Panel A: R&D intensity (St/Nt)

t t + 1

Data Model Data Model

β −0.106∗∗∗ −0.039∗∗∗ −0.094∗∗∗ −0.042∗∗∗

[−3.793] [−9.065] [−3.172] [−11.821]

Panel B: Consumption growth (∆ ln Ct)

t→ t + 1 t→ t + 2 t→ t + 3 t→ t + 4 t→ t + 5

Data Model Data Model Data Model Data Model Data Model

β−0.083∗∗∗−0.140∗∗∗−0.138∗∗∗−0.201∗∗∗−0.178∗∗∗−0.246∗∗∗−0.207∗∗∗−0.275∗∗∗−0.227∗∗∗−0.276∗∗∗

[−3.027] [−8.353] [−3.232] [−6.114] [−3.363] [−5.239] [−3.700] [−4.321] [−3.781] [−3.436]

Panel C: Output growth (∆ ln Yt)

t→ t + 1 t→ t + 2 t→ t + 3 t→ t + 4 t→ t + 5

Data Model Data Model Data Model Data Model Data Model

β −0.094∗∗ −0.109∗∗∗ −0.139∗∗ −0.243∗∗∗ −0.163∗ −0.218∗∗∗ −0.193∗∗ −0.225∗∗∗ −0.218∗∗ −0.233∗∗∗

[−2.044] [−3.357] [−2.145] [−6.606] [−1.957] [−4.053] [−2.296] [−3.525] [−2.492] [−3.123]

Note: The data sample is yearly and spans the period from 1965 to 2016. In the model, we simulate a
sample of 52 years as in the data. t-statistics are reported in brackets. *, **, and *** indicate statistical
significance at 10%, 5%, and 1%, respectively.

Next, we examine whether misallocation Mt covaries with the slow-moving com-
ponent of expected growth by testing whether misallocation negatively predicts future
consumption growth in the data and model. We run the following regression:

∆ ln Ct,t+1 + · · ·+ ∆ ln Ct+h−1,t+h = α + βMt + νt,t+h, (58)

where h = 1, · · · , 5 and ∆ ln Ct+h−1,t+h is the one-year log consumption growth from year
t + h− 1 to t + h. Panel B of Table 3 presents the results of projecting future consumption
growth over horizons of one to five years on misallocation Mt. In both the data and
model, the slope coefficients are negative and statistically significant. The coefficients are
more negative for longer horizons as consumption growth is persistent. Our estimates
indicate that misallocation Mt seems to comove with the slow-moving component of
expected consumption growth. We further run regressions similar to (58) using future
log output growth as the dependent variable. Panel C of Table 3 presents the results of

34



projecting future output growth over horizons of one to five years on misallocation Mt.
The patterns are similar to those of consumption growth in panel B.

Taken together, we find empirical evidence that the aggregate growth rates of con-
sumption and output can be predicted by our empirical measure of misallocation Mt,
especially over long horizons. Our findings lend empirical support to the notion of
misallocation-driven low-frequency growth fluctuations. In the simulated data of our
model, similar patterns are observed due to the key mechanism elaborated in Section 3.4.
Our model thus helps rationalize and identify misallocation as an economic source of
low-frequency growth fluctuations in the data.

4.4 Asset Pricing Implications of Misallocation

Table 4 studies the asset pricing implications of misallocation. Column (1) presents the
implications in the baseline model. The claim to aggregate consumption has a high
Sharpe ratio of 0.39, which is similar to that of the market portfolio in the data. Because
the model is calibrated to match an annualized volatility of consumption growth of 1.5%,
the excess return of the consumption claim has an annualized volatility of only 1.39%.
Thus, the average excess return is low due to the small volatility. The risk-free rate has
an average value of 1.58% and a low volatility, as in the data. We also compute the ratio
of the one-year SDF’s volatility to its mean, σ[Λt+1/Λt]

E[Λt+1/Λt]
, which determines the maximal

Sharpe ratio in the model. The baseline calibration implies a high value, 0.61.
Next, we study different model specifications. In column (2), we exogenously fix

the misallocation state variable Mt at its long-run mean E[Mt]. The volatility of the
consumption claim’s excess returns drops to zero and the Sharpe ratio is not defined.
This is because in our model, the aggregate shock dWt drives economic fluctuations
purely through its effect on Mt, while the evolutions of At and Et are locally deterministic
(see Proposition 5). This property differentiates our theoretical mechanism from those
of Kaltenbrunner and Lochstoer (2010) and Kung and Schmid (2015), whose models
generate low-frequency growth fluctuations through time-varying aggregate capital stock
or R&D expenditure, rather than the covariance between capital and productivity across
firms (i.e., Mt).

In column (3), we quantitatively investigate the role of economic growth, determined
by the growth rate of knowledge stock Nt. We consider an alternative specification
with no economic growth in column (3), by setting dNt ≡ 0.23 Compared with the

23Under this specification, the economy’s aggregate output and consumption still fluctuate due to
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Table 4: Asset pricing implications under different model specifications.

(1) (2) (3) (4) (5) (6) (7)

Baseline Mt ≡ E[Mt] dNt ≡ 0 e−θ CRRA (γ = 1/ψ)

= 0.2 = 0.45 = 1.5 = 3

E[Re
w,t] (%) 0.54 0 0.02 0.01 0.08 0.02 0.02

σ[Re
w,t] (%) 1.39 0 0.72 1.17 1.09 1.01 0.57

SR[Rw,t] 0.39 − 0.02 0.01 0.08 0.02 0.04

E[r f ,t] (%) 1.58 1.87 0.98 1.93 1.88 3.60 6.17

σ[r f ,t] (%) 0.47 0 0.34 0.33 0.41 0.47 0.57
σ[Λt+1/Λt ]
E[Λt+1/Λt ]

0.61 0 0.03 0.06 0.10 0.03 0.05

Note: In the table, Re
w,t = Rw,t − r f ,t is the consumption claim’s return Rw,t in excess of the risk-free rate

r f ,t; SR[Rw,t] = E[Re
w,t]/σ[Re

w,t] is the Sharpe ratio of the consumption claim; and σ[Λt+1/Λt]/E[Λt+1/Λt]
is the ratio of the one-year SDF’s volatility to its mean. Column (1) presents the results under the baseline
calibration. In column (2), we adopt the same baseline calibration but eliminate fluctuations in misallocation
by imposing Mt ≡ E[Mt] exogenously. In column (3), we adopt the same baseline calibration but eliminate
the growth of knowledge stock Nt by imposing dNt ≡ 0 exogenously. In columns (4) to (5), we set different
values of parameter θ. In columns (6) to (7), we set different values of parameter γ while imposing γ = 1/ψ.
For columns (4) to (7), we calibrate χ and σk to generate the same model-implied average consumption
growth rate and volatility as those reported in panel B of Table 1. Other parameters are set at the same
values as the baseline calibration.

baseline model in column (1), the volatility of the consumption claim’s excess returns
drops by about half, from 1.39% to 0.72%. The average excess return declines even more
significantly, resulting in a Sharpe ratio of merely 0.02.

In columns (4) and (5), we further show that merely having fluctuations in economic
growth is not sufficient to rationalize a high Sharpe ratio; it is important for misallocation
fluctuations to generate low-frequency growth fluctuations. Specifically, following the
insight illustrated in panels A to C of Figure 1, the persistence of idiosyncratic productivity
determines the persistence of growth. In columns (4) and (5), we set e−θ at 0.2 and 0.45,
respectively, which in turn results in a lower yearly autocorrelation of consumption
growth than that in the baseline calibration with e−θ = 0.85. Compared with column (1),
the Sharpe ratio of the consumption claim and the maximal Sharpe ratio determined by
the SDF drop significantly when idiosyncratic shocks are not persistent. These results
highlight the importance of low-frequency growth fluctuations in amplifying the impacts
of misallocation fluctuations on risk premia. Our findings complement the main insights
of Buera and Shin (2011) and Moll (2014) who analyze the impacts of the persistence

aggregate shocks. However, there is no long-run growth as the average growth rates of Yt and Ct are zero.
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of idiosyncratic productivity on TFP, welfare, and the speed of transition through the
self-financing channel.

In columns (6) and (7), we consider the specification where the representative agent
has a standard CRRA preference by setting γ = 1/ψ. In this setting, the Sharpe ratio
implied by the model is very low, but the risk-free rate is much higher due to the low EIS.

Taken together, the results in columns (3) to (7) indicate that it is the combination
of low-frequency growth fluctuations and the recursive preference of the representative
agent that generates the high Sharpe ratio in the capital market. The intuition is as follows.
On the one hand, the recursive preference ensures that the representative agent’s marginal
utility today is affected not only by news about contemptuous consumption growth, but
also, crucially, by news about future consumption growth. Thus, innovations in future
consumption growth can generate valuation effects through the SDF. On the other hand,
because consumption growth is persistent, a temporary innovation in consumption
growth would generate a persistent effect in future, which significantly amplifies the
impacts of future consumption growth on the marginal utility today. If we instead
consider non-recursive preference, such as the standard CRRA utility function, the low-
frequency consumption growth fluctuations would not have significant valuation effects
because the representative agent’s marginal utility only depends on the contemporaneous
consumption growth.

4.5 The Costs of Misallocation-Driven Growth Fluctuations

We evaluate the costs of misallocation-driven growth fluctuations in the stochastic sta-
tionary equilibrium through the lens of our model. In Section 4.5.1, we show that the
misallocation-driven growth fluctuations can generate significant welfare costs due to
the combination of two key properties of the model, endogenous low-frequency growth
fluctuations and the recursive preference of the representative agent. In Section 4.5.2,
we quantify the costs of misallocation fluctuations in an alternative way, measuring the
potential output gain if the amount of capital reallocation observed in booms could be
achieved in recessions.

4.5.1 Welfare Costs of Misallocation-Driven Growth Fluctuations

In our model, consumption fluctuations are almost entirely driven by fluctuations in
misallocation. By measuring the welfare costs of consumption fluctuations, we can thus
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Table 5: Welfare gains from removing consumption fluctuations.

(1) (2) (3) (4) (5) (6)

Baseline dNt ≡ 0 e−θ CRRA (γ = 1/ψ)

= 0.2 = 0.45 = 1.5 = 3

Welfare gains (%) 10.34 0.33 0.24 0.98 0.58 0.65

Note: The welfare gains from removing consumption fluctuations are computed using U0/U0 − 1, where
U0 and U0 represent the representative agent’s utility at t = 0, with and without (i.e., setting σk = 0)
consumption fluctuations, respectively. When computing U0, the parameter χ is recalibrated to have
the same average consumption growth rate while all other parameter values remain unchanged. The
specification in each column is described in Table 4.

provide a quantitative assessment for the welfare costs of misallocation-driven growth
fluctuations within the model. In reality, consumption fluctuations are likely driven
by other aggregate variables. Having this concern in mind, our purpose here is not to
structurally separate the costs of consumption fluctuations attributed to misallocation
fluctuations. Instead, our goal is to show that misallocation fluctuations have the capacity
to generate large welfare costs by inducing consumption fluctuations, in a calibrated
model that matches aggregate consumption moments (panel A of Table 2).

Specifically, we solve a similarly parameterized model without aggregate shocks (i.e.,
σk = 0) and compare the representative agent’s utility gain relative to the model with
aggregate shocks. Column (1) of Table 5 reports that the welfare gain from removing all
consumption fluctuations is 10.34% under the baseline calibration.

In columns (2) to (6) of Table 5, we compute the welfare gains from removing consump-
tion fluctuations under different specifications, similar to those in Table 4. Specifically,
columns (2) to (4) show that the welfare gains would be small if misallocation cannot
affect economic growth (i.e., setting dNt ≡ 0) or if misallocation is not persistent enough
to generate low-frequency growth fluctuations.24 Columns (5) and (6) show that if
preference is non-recursive (i.e., setting γ = 1/ψ), the welfare gains are also small.

Taken together, these results indicate that our model implies a large welfare cost of
misallocation-driven consumption fluctuations due to the combination of two properties.

24Columns (3) and (4) show that as idiosyncratic productivity becomes more persistent (i.e., higher e−θ),
the welfare gain from removing consumption fluctuations increases. This finding is related to the key
insight of Moll (2014), who shows that as idiosyncratic productivity becomes more persistent, the transition
speed from a distorted initial state to the steady state is slower, resulting in potentially larger welfare losses
during transitions. In our model with stochastic growth, the slow “transition” in response to aggregate
shocks generates endogenous low-frequency growth fluctuations, which result in large welfare costs under
the recursive preference of the representative agent.
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First, following the mechanism discussed in Section 3.4, the model is able to generate
low-frequency growth fluctuations through slow-moving misallocation. Second, the
representative agent has a recursive preference and thus, news about future consumption
growth affects his current marginal utility. When these two properties simultaneously
exist, a temporary innovation in consumption growth would have a persistent effect in
the future, which in turn significantly affects the representative agent’s current marginal
utility. Thus, the welfare gain from eliminating consumption fluctuations is quantified to
be large.

As shown in Table 4, these two properties also enable the model to rationalize the
high Sharpe ratio in the capital market. In our model, there is a tight connection between
the welfare cost of consumption fluctuations and the Sharpe ratio in the capital market.
Intuitively, both measures are higher when the representative agent’s marginal utility
exhibits larger variations in response to aggregate shocks. This tight connection is
exploited by Alvarez and Jermann (2004) to estimate the welfare gains from eliminating
all consumption uncertainty by directly applying the no-arbitrage principles on financial
market data without specifying consumer preference. We also implement the method
proposed by Alvarez and Jermann (2004) in our 1965-2016 sample and estimate that the
welfare gain from eliminating all consumption uncertainty ranges from 6.03% to 23.97%,
which nests the value implied by our structural model.25

The results in Tables 4 and 5 show that misallocation-driven growth fluctuations can
have significant implications for asset prices and welfare. As misallocation arises from
firms’ financial constraints in our model, these results are related to the literature on
the connection between financial frictions and misallocation (e.g., Buera and Shin, 2013;
Midrigan and Xu, 2014; Moll, 2014). A direct comparison of our model’s quantitative
implications with these models could be difficult due to the differences in model setup.
For example, our model has stochastic growth driven by misallocation fluctuations
whereas these models quantify losses from misallocation in steady states or transitions,
without aggregate shocks. Also, our model features both the final goods sector and the
intermediate goods sector, but for tractability, we only consider misallocation in former.

Despite the differences in model setup, our findings in Table 5 are broadly consistent
with the literature. For example, consistent with the calibration of Buera and Shin
(2013) and Moll (2014), our calibration of large idiosyncratic shocks implies that firm-

25Alvarez and Jermann (2004) propose different estimation methods to show robustness. We use their
first method, which projects consumption growth onto the payoff space spanned by a set of tradable assets.
The estimates and implementation details of other methods are reported in Table 4 of Online Appendix 4.1.
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level productivity is not very persistent. As a result, purely through the variation in
misallocation Mt, the model is able to generate a 2.48% volatility of TFP, as in the data.
This result is consistent with the finding of Buera and Shin (2013) that the misallocation
resulting from financial frictions can generate sizable TFP losses.

While Buera and Shin (2013) purely focus on quantifying misallocation through the
intensive margin (i.e., differences in MRPK among active firms due to financial frictions),
other papers highlight the importance of misallocation through the extensive margin (i.e.,
productive firms may not be active due to financial frictions, e.g., Banerjee and Moll, 2010;
Buera, Kaboski and Shin, 2011; Midrigan and Xu, 2014). Depending on the calibration and
model setup, Buera, Kaboski and Shin (2011) quantify that both extensive and intensive
margins are important whereas Midrigan and Xu (2014) estimate large TFP losses through
the extensive margin rather than the intensive margin. In our model, the misallocation
due to financial frictions reduces the final goods sector’s productivity Ht, which captures
the intensive margin effect. A lower Ht, in turn, reduces the profits of innovators. Through
the free-entry condition (10), this further leads to a lower growth rate of the variety of
intermediate goods, dNt/Nt (see equation (9)), which can be thought of as capturing the
extensive margin effect.26 The results in column (3) of Table 4 and column (2) of Table 5
indicate that the extensive margin plays a crucial role in rationalizing the high Sharpe
ratio in the capital market and generating a large welfare cost of misallocation-driven
growth fluctuations. These findings support the significant role of extensive-margin
misallocation quantified by Midrigan and Xu (2014).

4.5.2 Output Gains from Capital Reallocation

In both the data and model, capital reallocation is procyclical as the aggregate reallocation
rate is higher in booms than recessions. Eisfeldt and Shi (2018) propose a method to
quantify the cost of misallocation fluctuations over business cycles. The key idea of this
method is to measure the potential output gain if the amount of capital reallocation
observed in booms could be achieved in recessions. This method’s main advantage
is that it incorporates flow data on capital reallocation to help measure the cost of
increased misallocation during recessions. The quantity data on flows are presumably
more precisely measured than MRPK, which depends on particular model specifications.

In the model, productive firms (zi,t ≥ zt) lease capital from unproductive firms

26Note that in the intermediate good sector, there is no misallocation through the intensive margin
because producers are homogeneous.
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(zi,t < zt) as shown in Lemma 1. Thus, the aggregate reallocation rate over [t, t + dt) is
given by

Rt =
1
At

∫ ∞

zt

∫ ∞

0
λaϕt(a, z)dadz = λ(1−Ωt(zt)), (59)

where 1 − Ωt(zt) captures the share of aggregate capital in the final goods sector
held by productive firms (zi,t ≥ zt). Under our calibration, zt is countercyclical, with
corr(ln zt, ∆ ln(Ct)) ≈ −0.35. Thus, the aggregate reallocation rate Rt is procyclical even
with a constant λ.

Using the method proposed by Eisfeldt and Shi (2018), we quantify the potential
output gain in recessions if the reallocation rate of capital among firms during recessions
is assumed to be as high as that during booms.27 We apply this method to both the
actual data in our 1965-2016 sample and the simulated data of our model. The estimated
potential gains in recessions from capital reallocation are 3.58% and 3.09%, respectively,
indicating that misallocation fluctuations have large effects on output fluctuations. The
similarity in the two estimates provide a further validation of the model.

5 Cross-Sectional Evidence

Our theory’s main implication is that the volatile and persistent time-series variation
in misallocation captures the low-frequency component of the time-series variation in
aggregate growth. Although our model does not analyze cross-sectional implications,
we provide cross-sectional evidence to further support the theoretical mechanism. In
Section 5.1, we estimate the market price of risk for the misallocation factor and study its
cross-sectional asset pricing implications. In Section 5.2, we show that firms with higher
book-to-market ratios are more negatively exposed to the misallocation factor, which
provides further support that the slow-moving misallocation captures low-frequency
growth fluctuations. Finally, in Section 5.3, we provide evidence that misallocation drives
long-run growth through its impact on R&D by exploiting AJCA as a policy shock to
firms’ financial constraints.

27The implementation details are in Online Appendix 4.2.
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5.1 Misallocation as A Macroeconomic Risk Factor

Our model implies that the misallocation Mt plays a significant role in determining
the SDF of representative agent through its effects on aggregate consumption growth.
To examine the empirical relevance of this mechanism, we test whether the empirical
misallocation measure Mt is a risk factor significantly priced in the cross section of assets.

We consider standard test assets, including 25 size-sorted and book-to-market-sorted
portfolios, 10 momentum-sorted portfolios, and 6 maturity-sorted Treasury bond port-
folios. For each asset i, we estimate the factor loadings using the following time-series
regression:

Re
i,t = ci + ∑

k
βi,k fk,t + νi,t, (60)

where Re
i,t = Ri,t − r f ,t is the excess return of asset i over the risk-free rate and fk,t

represents risk factor k. We then estimate the cross-sectional price of risk associated
with the factors fk,t by running a cross-sectional regression of time-series average excess
returns, E[Re

i,t], on risk factor exposures estimated in equation (60) as follows,

E[Re
i,t] = α + ∑

k
β̂i,kλk + εi, (61)

where the estimated λ̂k is the price of risk for factor k and α̂ is the average cross-sectional
pricing error or zero-beta rate.

The above estimation procedure is implemented using different linear factor models.
The results are presented in Table 6 and visualized in Figures 3 and 4. As a benchmark,
column (1) of Table 6 reports the results of CAPM, which includes market excess returns
as the single risk factor. It clearly shows that the exposure to market risk cannot explain
the spread in average returns across portfolios. The cross-sectional intercept is statistically
significant and the factor price of risk is statistically insignificant. The pricing errors are
large, with a high total mean absolute pricing error (MAPE) of 2.76% and a low adjusted
R-squared of 0.30. Column (2) of Table 6 presents the results based on a two-factor
model that includes the year-on-year changes in the empirical misallocation measure,
∆Mt, as an additional risk factor. The price of risk for ∆Mt is −0.08, which is negative
and statistically significant as implied by our model.28 Relative to CAPM, the adjusted
R-squared increases significantly to 0.45 and the total MAPE declines significantly from

28The magnitude of the price of risk for ∆Mt does not represent the risk premium of ∆Mt because the
misallocation factor ∆Mt does not lie in the space of excess returns.
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Table 6: Portfolio returns and model fit.

(1) (2) (3) (4) (5) (6) (7) (8)

Mkt Mkt, ∆M FF FF, ∆M Mkt, CG Mkt, ∆M, CG FF, CG FF, ∆M, CG

Panel A: Prices of risk

Intercept 3.34∗∗∗ 1.42 2.67∗∗∗ 1.78 2.44 1.41 2.34∗∗ 1.46

[3.47] [0.84] [3.65] [1.51] [1.76] [0.89] [2.65] [1.16]

Mkt 4.92 6.08 3.66 5.35 4.61 5.83 4.53 6.20

[1.28] [0.97] [0.98] [0.96] [0.95] [1.01] [1.08] [1.05]

∆M −0.08∗∗ −0.08∗∗∗ −0.07∗∗∗ −0.08∗∗

[−2.54] [−2.61] [−2.81] [−2.45]

SMB 3.01 2.18 2.64 1.83

[1.05] [0.51] [0.82] [0.40]

HML 4.36 4.80 4.40 4.84

[1.46] [1.08] [1.31] [1.03]

CG 0.02∗∗ 0.01 0.02∗∗∗ 0.02∗

[2.13] [0.83] [2.66] [1.84]

Panel B: Test diagnostics

Total MAPE 2.76 1.46 1.90 1.45 2.03 1.39 1.95 1.47

Size and B/M 25 2.77 1.53 1.30 1.47 1.49 1.40 1.38 1.58

Momentum 10 3.30 1.96 3.72 1.98 3.62 1.97 3.71 1.75

Bond 6 1.85 0.37 1.36 0.48 1.61 0.40 1.43 0.55

Adjusted R-squared 0.30 0.45 0.62 0.71 0.45 0.53 0.63 0.72

Note: This table presents pricing results for 41 test assets, including 25 size-sorted and book-to-market-
sorted portfolios, 10 momentum-sorted portfolios, and 6 maturity-sorted Treasury bond portfolios. Each
model is estimated using equation (61). Mkt is the market’s excess return over the risk-free rate. ∆M is the
misallocation factor, which is the year-on-year changes in the empirical misallocation measure Mt. SMB
and HML are the two factors in the FF3 model, capturing the excess returns of small caps over big caps
and of value stocks over growth stocks, repectively. Panel A reports the prices of risk. Shanken t-statistics
are reported in brackets. Panel B reports test diagnostics, including MAPE and the adjusted R-squared.
The sample is yearly and spans the period from 1965 to 2016. *, **, and *** indicate statistical significance
at 10%, 5%, and 1%, respectively.
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Note: This figure plots the realized mean excess returns of 35 equity portfolios (25 size-sorted and book-
to-market-sorted portfolios and 10 momentum-sorted portfolios) and 6 maturity-sorted Treasury bond
portfolios against the expected excess returns predicted by various linear factor asset pricing models. The
sample is yearly and spans the period from 1965 to 2016.

Figure 3: Realized versus predicted mean excess returns in factor models with Mt.

to 1.46%. The test assets are lined up very close to the 45-degree line in the two factor
model (panel B of Figure 3), which is in sharp contrast to the prediction of CAPM (panel
A of Figure 3).

As another benchmark, column (3) of Table 6 presents the results of the Fama-French
three-factor (FF3) model. Comparing columns (2) and (3) of Table 6, the FF3 model
achieves a higher adjusted R-squared of 0.62. However, the two-factor model with market
returns and the misallocation factor ∆Mt has a lower total MAPE. The two-factor model
outperforms the FF3 model especially for the 10 momentum-sorted portfolios (3.72%
compared to 1.96%). It is well known that the FF3 model has a poor explanatory power
for momentum-sorted portfolio returns. The cross-sectional fit is clearly displayed in
panels B and C of Figure 3, which shows that the two-factor model outperforms the
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Note: This figure plots the realized mean excess returns of 35 equity portfolios (25 size-sorted and book-
to-market-sorted portfolios and 10 momentum-sorted portfolios) and 6 maturity-sorted Treasury bond
portfolios against the expected excess returns predicted by various linear factor asset pricing models. The
sample is yearly and spans the period from 1965 to 2016.

Figure 4: Realized versus predicted mean excess returns in factor models with Mt and
accumulated future consumption growth.

FF3 model mainly due to the improved fit for momentum-sorted portfolios. In column
(4) of Table 6, we further include the misallocation factor ∆Mt to the FF3 model to
construct a four-factor model. Compared with the FF3 model, the cross-sectional fit
further improves as shown by the lower total MAPE and higher adjusted R-squared in
the four-factor model. The improvement is mainly due to improved explanatory power
for momentum-sorted portfolio.

Our model suggests that the low-frequency component of aggregate consumption
growth is generated by the slow-moving misallocation. If this mechanism is empirically
relevant, we expect the long-run expected consumption growth to have little explanatory
power for portfolio returns after including the misallocation factor ∆Mt in linear factor
models. Following Parker and Julliard (2005), we use accumulated future consumption
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growth to approximate long-run expected consumption growth. Column (5) of Table
6 and panel A of Figure 4 show that the two-factor model with market returns and
accumulated future consumption growth can fit the returns of our test portfolios well,
with an adjusted R-squared of 0.45. In column (6) of Table 6 and panel B of Figure
4, we augment this two-factor model with the misallocation factor ∆Mt to construct
a three-factor model. We find that the relation between realized mean excess returns
and predicted mean excess returns across our test portfolios stays almost unchanged,
implying that expected consumption growth and misallocation are indeed similarly
priced in the cross section of test assets. However, the coefficient on accumulated future
consumption growth becomes statistically insignificant after including ∆Mt as a factor
whereas the coefficient on ∆Mt is statistically significant. Similar patterns are shown
in columns (7) and (8) of Table 6 and panels C and D of Figure 4, when we include
the misallocation factor ∆Mt in a four-factor model that contains the Fama-French three
factors and accumulated future consumption growth.

The strong pricing power of misallocation factor, as a (macro) nontradable asset
pricing factor, is an important, nontrivial empirical finding. As emphasized by Cochrane
(2017), it is the sole job of macro-finance to understand what are the primitive sources of
systematic risk, by suggesting (macro) nontradable factors, and explain why they earn a
premium.29 However, not many studies find that (macro) nontradable factors motivated
by macro-finance models empirically outperform or drive out (ad hoc) tradable factors
such as Fama-French factors in explaining the cross section of expected asset returns,30

partly because the measurement error in nontradable factors causes attenuation bias in
the estimates of factor exposures.

5.2 Cash Flow Exposure to the Misallocation Factor

To support the key theoretical mechanism that the slow-moving misallocation drives
low-frequency growth fluctuations, we provide further cross-sectional evidence on firms’
cash flow exposure to the misallocation factor. Our starting point is the robust evidence
found in the asset pricing literature (Bansal, Dittmar and Lundblad, 2005; Parker and

29Other recent reviews on macro-finance models also highlight this point (e.g., Brunnermeier, Eisenbach
and Sannikov, 2012; Dou et al., 2020a).

30A few exceptions include durable consumption growth (Yogo, 2006; Gomes, Kogan and Yogo, 2009), ex-
penditure shares of housing (Piazzesi, Schneider and Tuzel, 2007), market liquidity (Pástor and Stambaugh,
2003), intermediary leverages (Adrian, Etula and Muir, 2014; He, Kelly and Manela, 2017), and common
fund flows (Dou, Kogan and Wu, 2023), among others.
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Table 7: Exposure to misallocation Mt across firms sorted on the book-to-market ratio.

BEi,t−1/MEi,t−1 Q1 (low) Q2 Q3 Q4 Q5 (high) Q5−Q1

β
p
1 0.032 −0.160∗ −0.348∗∗∗ −0.425∗∗ −0.505∗∗∗ −0.538∗∗

[0.217] [−1.769] [−3.015] [−2.437] [−2.756] [−2.281]

Note: In each year t, we sort firms into quintiles on their book-to-market ratios BEi,t−1/MEi,t−1 in year
t− 1. For each quintile portfolio, we estimate β

p
1 according to specification (62). The sample spans the

period from 1965 to 2016. t-statistics are reported in brackets. *, **, and *** indicate statistical significance at
10%, 5%, and 1%, respectively.

Julliard, 2005; Hansen, Heaton and Li, 2008; Santos and Veronesi, 2010): the cash flows
of value firms load more positively on accumulated consumption growth than those of
growth firms. Given that a higher misallocation predicts a lower consumption growth
over long-horizons in both the data and model (panel B of Table 3), if the theoretical
mechanism has empirical relevance, we should find the cash flows of value firms load
more negatively on misallocation in the data.

To test this prediction, we follow the empirical strategy of Santos and Veronesi
(2010). In each year t, we sort firms into quintiles based on their book-to-market ratios
BEi,t−1/MEi,t−1 in year t − 1, where BEi,t−1 is the book equity from Compustat and
MEi,t−1 is the market equity from CRSP. For each quintile portfolio, we compute the
value-weighted return on equity (ROE) across all firms within the portfolio, where a
firm’s ROE is its income before extraordinary items divided by its common equity. Let
ROEp

t+j,j+1 denote the value-weighted ROE at year t + j of the portfolio p, which was
formed j+ 1 years earlier, i.e., in year t− 1. We run a regression similar to the specification
adopted by Santos and Veronesi (2010), except for including accumulated misallocation
shocks as an additional independent variable:

4

∑
j=0

ρjROEp
t+j,j+1 = β

p
0 + β

p
1

4

∑
j=0

ρj∆Mt+j + β
p
2

4

∑
j=0

ρjROEMkt
t+j + νt, (62)

where ρ = 0.95 is a constant as in Santos and Veronesi (2010). The variable ∆Mt is the
year-on-year changes in Mt and the variable ROEMkt

t is the ROE of the market portfolio.
The coefficient of interest is β

p
1 , which captures the loadings of accumulated ROE on

accumulated misallocation shocks.
Table 7 presents the results. The accumulated ROE of firms with high book-to-market

ratios (i.e., value firms in the quintile group 5 labeled as Q5) is significantly more
negatively exposed to accumulated year-on-year changes in misallocation than that of
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firms with low book-to-market ratios (i.e., growth firms in the quintile group 1 labeled as
Q1). The loadings monotonically decrease from 0.032 to −0.505 as the book-to-market
ratio increases from Q1 to Q5. The difference in the loadings between Q1 and Q5 (Q5−Q1)
is −0.538, which is statistically significant.

5.3 Impacts of AJCA on Misallocation and R&D

In the model, misallocation drives long-run growth through its impact on R&D. In this
section, we provide evidence for this mechanism by examining industry-level responses
to a policy shock that alleviates firms’ financial constraints.

The AJCA passed in 2004 allows domestic firms in the U.S. to repatriate their foreign
profits at a tax rate of 5.25%, whereas the tax rate is 35% under the prior law. This
policy change effectively relaxes the financial constraints of treated firms, significantly
boosting the investments of financially constrained firms (Faulkender and Petersen, 2012).
According to our model, relaxed financial constraints would lead to lower misallocation,
providing firms more incentive to conduct R&D. To test this prediction, we estimate
the impact of AJCA on industry-level misallocation and R&D expenditure by exploiting
industries’ differential exposure to AJCA using a DID method.

Specifically, we construct industry-level measures for misallocation, R&D-capital ratio,
and AJCA exposure using U.S. Compustat data. We use three-digit SIC codes (SIC3) to
define industries. We exclude industries whose median number of firms is smaller than
10 to ensure accurate estimation of industry-level misallocation, which is constructed
following the procedures described in Section 4.1, except for running regression (56)
based on firms within each industry. The industry-level R&D-capital ratio is constructed
as the ratio of the total R&D expenditure to total capital of firms within the industry.
To capture an industry’s exposure to AJCA, we construct an industry-level measure for
foreign business intensity, which is the the proportion of firms in the industry whose
pre-tax income from abroad during the 3-year period prior to AJCA (i.e., from 2001 to
2003) exceeds 5%. We consider industries with foreign business intensity above 33% as
treated industries and the other industries as untreated industries. Treated industries
are matched with untreated industries using the nearest neighbor matching method (see
Online Appendix 4.3) based on six industry-level characteristics.31 All industry-level

31The six industry-level characteristics are mean and standard deviation of firms’ sales, mean and standard
deviation of firms’ profit margin, mean and standard deviation of firms’ Tobin’s Q. We construct a firm’s (net)
profit margin using its income before extraordinary items divided by its sales as in Dou, Ji and Wu (2021),
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Table 8: Impacts of AJCA on misallocation and R&D.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Industry-level misallocation

α α−4 α−3 α−2 α0 α1 α2 α3

−0.470∗∗∗ −0.211 −0.250 −0.046 −0.404∗∗ −0.584∗∗∗ −0.773∗∗∗ −0.627∗∗

[−2.700] [−0.663] [−1.295] [−0.266] [−2.107] [−2.644] [−2.729] [−1.968]

Panel B: Industry-level R&D-capital ratio

α α−4 α−3 α−2 α0 α1 α2 α3

0.018∗∗∗ −0.013 −0.005 −0.002 0.010∗∗ 0.013∗∗ 0.015∗∗ 0.014

[2.856] [−1.508] [−0.924] [−0.685] [2.001] [2.144] [2.062] [1.511]

Panel C: Industry-level R&D-capital ratio controlling for misallocation

α α−4 α−3 α−2 α0 α1 α2 α3

0.013∗∗ −0.013 −0.005 −0.002 0.007 0.009 0.009 0.010

[2.017] [−1.259] [−0.896] [−0.558] [1.227] [1.220] [1.031] [0.943]

Note: Panel A estimates the impacts of AJCA on industry-level misallocation. Column (1) reports the
estimated α̂ in specification (63). Columns (2) to (8) report the estimated ατ in specification (64) for
τ = −4,−3,−2, 0, 1, 2, 3. All coefficients are normalized relative to τ = −1. Panel B estimates the impacts
of AJCA on industry-level R&D-capital ratio. Panel C estimates the impacts of AJCA on industry-level
R&D-capital ratio, controlling for industry-level misallocation. t-statistics are reported in brackets. *, **,
and *** indicate statistical significance at 10%, 5%, and 1%, respectively.

characteristics are averaged over the 3-year period prior to AJCA.
We run the following regression using industry-year observations for the period from

2000 to 2007:
Ys,t = αTreats × Postt≥2004 + β1Treats + β2Postt + εs,t, (63)

where Treats = 1 if industry s is a treated industry and Treats = 0 otherwise. The variable
Postt≥2004 is a time indicator that equals one for years after 2004. The coefficient of
interest is α, which estimates the average effect of AJCA on the outcome variable Ys,t

of treated industries. Our interested outcome variables are industry-level misallocation
(Ms,t) and R&D-capital ratio (RDs,t). The estimated coefficients are presented in column
(1) of panels A and B in Table 8. Our results indicate that AJCA results in significantly
lower misallocation and higher R&D-capital ratio in treated industries.

and a firm’s Tobin’s Q as Tobin_Qi,t = (total_assetsi,t + market_equityi,t − book_equityi,t)/total_asseti,t,
following Gompers, Ishii and Metrick (2003).
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Note: The solid lines visualize the empirical estimates in columns (2) to (8) of panels A and B in Table
8, respectively. All coefficients are normalized relative to τ = −1. The vertical bars represent the
corresponding 90% confidence intervals.

Figure 5: Impacts of AJCA on misallocation and R&D.

Next, we estimate the effect of AJCA in each year by running the following regression:

Ys,t =
3

∑
τ=−4

ατTreats ×Yearτ
t + β1Treats +

3

∑
τ=−4

β2,τYearτ
t + εs,t, (64)

where Yearτ
t is an indicator variable that captures the time difference relative to year 2004,

and it equals 1 if t = 2004 + τ and 0 otherwise. The coefficient ατ estimates the impact of
AJCA on the outcome variable Ys,t of treated industries τ year after (or before if τ < 0)
the year (i.e., 2004) in which this policy was implemented. The estimated impacts on
industry-level misallocation and R&D-capital ratio are presented in columns (2) to (8) of
panels A and B in Table 8, respectively, and visualized in Figure 5. The leading terms of
the estimated treatment effects are close to 0 and statistically insignificant, suggesting that
the parallel trend assumption is satisfied in the years before 2004. Regarding the three
years after 2004, we estimate that AJCA has significant negative effects on industry-level
misallocation and significant positive effects on industry-level R&D-capital ratio.

Furthermore, we provide evidence that the positive impact of AJCA on the industry-
level R&D-capital ratio is mostly achieved through the change in industry-level misalloca-
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tion. Specifically, we modify specification (63) as follows:

RDs,t = αTreats × Postt≥2004 + β1Treats + β2Postt + β3Ms,t + β4Treats ×Ms,t + εs,t, (65)

which controls for industry-level misallocation Ms,t and its interaction term with Treats.
The estimated coefficient is presented in column (1) of panel C in Table 8, which indicates
that AJCA has a much less significant effect on R&D-capital ratio after controlling for
industry-level misallocation.

We further estimate the impact of AJCA on industry-level R&D-capital ratio in each
year, controlling for industry-level misallocation, by running the following regression:

RDs,t =
3

∑
τ=−4

ατTreats×Yearτ
t + β1Treats +

3

∑
τ=−4

β2,τYearτ
t + β3Ms,t + β4Treats×Ms,t + εs,t.

(66)
Columns (2) to (8) of panel C in Table 8 report the estimates in each year, which indicate
that the impacts of AJCA on industry-level R&D-capital ratio are statistically insignificant
after controlling for industry-level misallocation. We show that these results are robust if
we estimate the impacts of AJCA using alternative empirical specifications (see Online
Appendix 4.4).

6 Conclusion

This paper sheds light on the connection between misallocation and the systematic risk
that shapes asset prices in capital markets. Through the lens of an analytically tractable
model with endogenous growth and misallocation, we show that macroeconomic shocks
can have persistent impacts on capital misallocation. The slow-moving misallocation,
in turn, generates low-frequency growth fluctuations. When agents have recursive
preferences, the misallocation-driven low-frequency growth fluctuations can have first-
order asset pricing implications in capital markets and lead to substantial welfare losses.

In the data, we construct a misallocation measure motivated by the model and find
evidence that the aggregate growth rates of consumption and output can be predicted by
misallocation over long horizons. Moreover, as a macroeconomic risk factor, misallocation
explains the cross-sectional returns of standard test portfolios, suggesting that it also
captures low-frequency fluctuations in stock returns.
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