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I. Introduction

Although the linear Capital Asset Pricing Model (CAPM) is clearly one of the most popular

models of modern financial economics, abundant empirical evidence suggests that the model is

misspecified. This has spurred the search for alternative sources of systematic risk. One obvi-

ous approach is to consider a non-linear model, but it requires finding ways to discipline the

potentially infinite number of non-linear pricing functions. A common approach is to assume a

representative agent and derive the non-linearity implied by the agent’s marginal utility func-

tion. Prominent examples include coskewness risk (Harvey & Siddique 2000), cokurtosis risk

(Dittmar 2002) and downside risk (Ang et al. 2006a, among others). However, these parametric

approaches often cannot explain many of the existing return anomalies. Moreover, standard

utility functions rule out non-monotonic pricing functions that have empirical support from the

options data (Jackwerth 2000, Aı̈t-Sahalia & Lo 2000, Rosenberg & Engle 2002).

This paper suggests an alternative approach to obtain a non-linear market model directly

from the data without imposing any structure on the pricing relationship. For this, I rely on the

S&P 500 options market, where non-linear payoffs are traded and priced. To infer the pricing

of market risk from the data, I use standard tools from the literature on the estimation of the

option-implied pricing kernel by combining index options data with a return density forecast.

My paper is the first to connect this pricing kernel to the cross-sectional pricing of stock returns.

The empirical results show that the non-linear pricing of market risk inferred from option

prices can correctly price a large set of prominent stock return anomalies, both in US and

European data. In particular, this includes stock portfolios sorted on CAPM-beta, volatility,

idiosyncratic volatility, momentum, turnover, zero-trade, sensitivity to aggregate volatility, past

maximum return and industry, which all have large anomalous returns relative to the CAPM.

The pricing kernel that sets the anomaly alphas to zero is only a function of the market return,

and its functional form is estimated fully out-of-sample using only index options and index

return data, without using any cross-sectional return information.

A well-known property of the estimated option-implied pricing kernel is its non-monotonic

U-shape (Bakshi et al. 2010, Christoffersen et al. 2013, Song & Xiu 2016), which is illustrated in

Figure 1. The interesting feature is that the pricing kernel is increasing in the area of positive

returns, which implies an upside risk premium. I show that this upside risk premium, which is
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Figure 1: Stylized pricing kernels and return relationships with curvature. The
figure illustrates a stylized U-shaped pricing kernel M , monotonic M , together with the returns of asset
j that have either a linear relationship, or positive and negative return curvature relative to the market
return Rm.

absent in existing factor models, explains on average half of the alphas of both the CAPM and

the Fama & French (1993) three factor model, and up to 89% in case of the low beta anomaly.

Furthermore, upside risk is on average associated with a statistically significant risk premium

of 4.0% p.a.

The prevalence and relative magnitude of upside risk premium is strikingly consistent across

other asset classes. In particular, when using the same pricing kernel to price several options

and commodity portfolios, I again find a significant upside risk premium of about 50% of the

CAPM alpha. Finally, applying the analogous approach to European equities portfolios delivers

very similar results than for the US and confirms the results out-of-sample.

To interpret my findings, I provide a structural model that generates a non-monotonic

pricing kernel due to exposure to variance risk. An empirical test of this channel that uses

variance risk as a second (non-linear) factor can reconcile the observed anomalies.

The theoretical analysis starts with the derivation of two properties of the data-generating

process that are necessary for non-linear pricing of risk to outperform linear pricing. These

two conditions are, first, a systematic non-linear dependence between the market return and

anomaly returns, and second, that dependence must be inversely related to the pricing kernel.
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Turning to the data, I document a striking feature of many prominent anomalies which I

refer to as “curvature patterns”. This pattern is graphically illustrated in Figure 1. Those

portfolios that on average generate positive CAPM alphas exhibit a negative curvature of their

returns relative to the market, and vice versa. As can be seen from Figure 1, portfolios with

negative curvature underperform the linear relationship both in times of large positive and large

negative market returns.

Schneider et al. (2020) have documented this pattern for the low beta and the idiosyncratic

volatility anomaly. I show that this pattern is much more widespread, by studying all 95

portfolio sorts considered in Gu et al. (2020) in my sample ranging from 1996-2019. I find that

most portfolio sorts where the sorting variable is based on market data (stock prices or trading

volume) have strong curvature patterns. These are 16 sorts in total, and include past maximum

return, various measures of momentum and stock liquidity, and industry sorts. In contrast,

portfolio sorts where the sorting variable is based on accounting data, which are the majority

of commonly used variables, do not display any such curvature patterns.

To show the importance of this finding, recall that the risk premium (i.e., the expected

excess return) Rj on any asset j can be written as:

E
[
Rj
]

= −Cov
[
Rj ,M

]
×Rf . (1)

Therefore, all else equal, a more negative curvature implies that the portfolio returns are more

negatively correlated with a U-shaped pricing kernel M , and therefore require a higher risk

premium. Focusing on the upside, the negative curvature together with the U-shaped M induce

an additional upside risk premium. Those portfolios that have a positive curvature, on the

contrary, are hedge assets in both tails and therefore earn low returns on average.

While numerous studies show that downside risk is priced in the cross-section of stock

returns (e.g., Ang et al. 2006a, Lettau et al. 2014, Kelly & Jiang 2014, Farago & Tédongap

2018), upside risk has received much less attention in the literature. Although a few papers

have extended their stock-level downside risk measure to an upside risk measure, they generally

find weak and insignificant upside risk premia on the individual stock level (Ang et al. 2006a,

Chabi-Yo et al. 2018). In contrast, I find that the upside risk is significantly priced at the

portfolio level. This divergence is related to the finding that many well-know portfolios have
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strong curvature patterns and hence tail risk exposure, while measures of tail exposure have

low persistence on the stock level.

To interpret my pricing results economically, I link them to an explanation based on variance

risk, which is arguably the most important risk factor for option pricing. The finding of a non-

monotonic option-implied pricing kernel is often referred to as the “pricing kernel puzzle”,

since it is at odds with the monotonicity predicted by many classical theories. A promising

explanation for this puzzle is variance risk, as suggested by Chabi-Yo (2012), Christoffersen et al.

(2013), and Bakshi et al. (2022). In particular, Christoffersen et al. (2013) propose a pricing

kernel which is decreasing in the market return and increasing in return variance. The existence

of a variance risk premium in combination with a U-shaped relationship between returns and

variances then induces a U-shaped projection of the pricing kernel onto index returns. This

explanation is appealing, since the variance risk premium is empirically well-documented, and

the enormous trading volumes in options and other volatility related derivatives show that

investors are clearly concerned with variance risk.

However, from the perspective of existing equilibrium models the U-shaped pricing kernel

is still a puzzle, and it is unclear whether these relationships from reduced form models can

also be obtained in a structural model. To close the gap and illustrate the link, I show that a

modified Bansal & Yaron (2004) long-run risks model can generate a U-shaped pricing kernel,

by introducing GARCH type dynamics for the variance of consumption growth. The key feature

of these dynamics is that they have a feedback mechanism where consumption shocks impact

future variance, leading to an increase in variance following both large positive and negative

consumption shocks.1 I provide supporting evidence for this property in consumption data. As

dividends are modeled as levered consumption, the new feature makes large positive market

returns associated with increases in variance on average. Due to her Epstein & Zin (1989)

preferences, the representative agent dislikes high variance, and hence these states of the world

are associated with high marginal utility. In other words, a high positive return is indicative

of an increase in the variance of fundamentals, which the agent dislikes more than the large

positive consumption growth associated with it.

Building on these arguments, I empirically test whether my pricing results are consistent

1Tédongap (2015) also studies a long-run risks model with GARCH dynamics, but does not study
the projected pricing kernel or upside risk.
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with a compensation for investors’ exposure to systematic variance. Specifically, I use the

returns to a variance contract, i.e., the asset that costs V IX2 and pays the monthly realized

variance, as an additional pricing factor. This extended and U-shaped market model again

delivers low and insignificant pricing errors, which shows that exposure to systematic variance

can indeed explain the otherwise anomalous portfolio returns. In other words, referring back to

the curvature patterns from Figure 1, many anomalies exhibit a payoff profile that resembles a

short straddle, and - just like the options position - they earn positive excess returns relative

to the CAPM in compensation for losses in both tails. As extreme returns in both tails tend to

coincide with spikes in realized variance, a variance-averse investor dislikes these states of the

world and hence requires an additional risk premium for stocks with negative curvature.2

This explanation differs from existing studies on the pricing of market variance risk in

equities in two ways. First, based on an ICAPM argument, several studies show that shocks

to future expected variance are priced in the cross-section (Ang et al. 2006b, Bansal et al.

2014, Campbell et al. 2018). In contrast, I show that using realized variance as an additional

factor can explain numerous return anomalies. Second, I document that realized variance has

a U-shaped relationship relative to the contemporaneous index return, and hence the model

generates a U-shaped pricing kernel. In contrast, shocks to future expected variance have a

monotonically decreasing relationship relative to the index return and therefore do not generate

upside risk.

The variance risk explanation brought forward in this paper is related to the coskewness

model of Kraus & Litzenberger (1976) and Harvey & Siddique (2000). In a more recent empirical

test, Schneider et al. (2020) show that the model can explain the low beta and the idiosyncratic

volatility anomaly. I differ from these studies in several ways. First, my model can explain

a substantially larger number of anomalies as well as the returns of other asset classes. In

contrast, I show that the coskewness factor cannot explain most of these anomalies. Second,

my approach allows me to study the effect of upside and downside risk separately, while most

existing approaches cannot differentiate between the two. In fact, while the coskewness literature

usually emphasizes the downside risk, I highlight that upside risk is substantial and relevant

2The findings further suggest that the pricing of risks in the options and stock markets are consistent,
and that the two markets are integrated. This is in contrast to several papers that argue that the two
markets are partially segmented (e.g., Bollen & Whaley 2004, Garleanu et al. 2008, Frazzini & Pedersen
2022, Dew-Becker & Giglio 2022).

5



for understanding anomaly returns. Third and related, I provide an economic explanation for

upside risk via variance risk. In the coskewness model the upside risk emerges from a second

order Taylor-series expansion of a utility function over returns. However, as long as utility

is monotonically increasing (nonsatiation) - which is the case for standard utility functions -

the true pricing kernel cannot be U-shaped.3 Fourth, my approach does not rely on a factor

mimicking portfolio to measure the market price of risk, but obtains it directly from the options

data.

The remainder of the paper proceeds as follows. Section II studies non-linear pricing of mar-

ket risk theoretically and provides empirical evidence for curvature patterns in returns. Section

III introduces the estimation methodology for the pricing kernel along with the estimation re-

sults. The pricing results and their robustness are presented in Section IV. Section V shows that

a variance risk-based explanation can empirically rationalize the results. Section VI outlines

a equilibrium framework that generates an upside risk premium, and Section VII concludes.

The appendix collects technical details, and the internet appendix contains derivations, further

results and robustness checks.

3Several theories that depart from rational expectation also imply qualitatively that stocks with
positive skewness of returns on average have low returns. Examples include the endogenous optimal
beliefs model of Brunnermeier et al. (2007), the heterogeneous skewness preference model of Mitton &
Vorkink (2007), and the cumulative prospect theory model of Barberis & Huang (2008). In contrast
to these theories, I provide a quantitative explanation based on variance risk. In addition, I focus on
systematic risk on a portfolio level, while the theories focus on idiosyncratic skewness on the stock level,
which quickly diversifies away when aggregating stocks into portfolios.
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II. Non-linear Pricing and Curvature Patterns in Asset Returns

This section discusses theoretically under which conditions non-linear pricing of risk matters.

I then verify the first condition in the data, namely, that returns of trading strategies have

a systematic, non-linear relationship relative to the index returns. For this, I first present a

detailed empirical example using the idiosyncratic volatility anomaly, and then generalize to

many equity portfolios and other asset classes. The second condition is verified in Sections III

and IV.

A. Conditions for non-linear pricing to matter

Let Mt+1 = Mt(R
m
t+1) denote a pricing kernel that is a potentially non-linear function of the

market excess return Rm such that the Euler equation

Et[Mt+1R
m
t+1] = 0 (2)

holds. In principle, the pricing kernel can be a function of many sources of risk, and hence

M(Rm) denotes only the pricing kernel projected onto Rm. As discussed in Cochrane (2005),

the projected pricing kernel has the same pricing implications as the original kernel for all assets

which payoffs depend only on Rm. Under which conditions it prices any other asset’s excess

return Rj depends on the structure of the economy.

To address this question, one can formally ask if also

Et[Mt+1R
j
t+1] = 0 (3)

holds. To proceed, I have to make further assumptions on the data-generating process. To get

an intuition on the relevance of non-linear pricing, consider the following setup:

Rjt+1 = βjRmt+1 + εt+1, (4)
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and three potential assumptions on the CAPM pricing errors ε:

Et[εt+1|Rmt+1] =0, (5)

Et[εt+1|Rmt+1] =α 6= 0, (6)

Et[εt+1|Rmt+1] =g(Rm), Et[εt+1] = α 6= 0, Covt(εt+1, R
m
t+1) = 0, (7)

where g(·) denotes a non-linear function. In the first case, any M(Rm) that satisfies (2) will also

satisfy (3), regardless of its functional form (all proofs are provided in the internet appendix

IA.1.1). In the second case, ε contains one or several sources of systematic risk that are included

in the unprojected pricing kernel and command additional risk premia beyond the market. But

these risks are not related to Rm, and hence (3) will not hold. In the empirical test below,

book-to-market or profitability-sorted stock portfolios appear to be such an asset.

The third case is the relevant one for this paper. Here, the conditions specify that ε is non-

zero in expectations and has a systematic but non-linear relationship with Rm. The conditions

rule out that a linear M(Rm) can price Rj , and g(Rm) will show up in the pricing error alpha.

A simple example for this case would be εt+1 = (Rmt+1)2, with Rm following a symmetric

distribution. However, a non-linear M(Rm) could potentially capture the dependence g(Rm)

and hence price Rj . Formally, plugging the structure of Rj from (4) and (7) into (3) yields:

Et[Mt+1R
j
t+1] = Et[Mt+1β

jRmt+1] +Et[Mt+1g(Rm)] (8)

= 0 +Et[Mt+1g(Rm)]. (9)

The last term in (9) will be non-zero for a linear pricing model under assumptions (7), but can

be zero if M(Rm) is inversely related to g(Rm)(IA.1.1 provides an example).

In other words, in order for non-linear pricing to be relevant, one has to find systematic,

non-linear relationship g(Rm) between the CAPM pricing errors ε and Rm, that are in addition

inversely related to M(Rm), i.e., covary with plausible sources of risk. The following sections

will show the first property in the data, while the second property is studied in the Sections IV

and V.

Finally, the third case (7) can have two different economic mechanisms and interpretations.

Either purely M(Rm) captures how market risk is priced in a non-linear way, or there is a
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second priced risk factor that has a non-linear dependence with Rm such as, e.g., variance risk.

The empirical results in Sections V and VI point towards the second interpretation.

B. Empirical curvature patterns: example

I will illustrate the case of (7) together with the negative dependence between g(Rm) and

M(Rm) using the example of the idiosyncratic volatility (Ivol) anomaly of Ang et al. (2006b)

which refers to the empirical fact that portfolios comprised of stocks with high Ivol have negative

CAPM alphas, and vice versa. To motivate my measure for the non-linearity g(Rm) I draw on

the key stylized property from the option-implied pricing kernel estimation in Section B below,

namely, that the empirical estimates of M(Rm) are predominately U-shaped. The simplest way

to represent this properties is:

Mapprox
t+1 = a+ b×Rm + c× (Rmt+1 − d)2, (10)

where the parameter d can capture the finding that the U-shape is not symmetric. In (10), the

third term specifies the deviation from the linear CAPM, and hence the implied non-linearity

is g(Rm) ≡ (Rmt+1)2, which measures curvature in returns.4

To quantify the curvature patterns in the data, I first run the standard CAPM regression

for each portfolio j of the ten Ivol-sorted portfolios:

Rjt+1 = αj + βj ×Rmt+1 + εt+1, (11)

and second, the CAPM regression extended by a square term on the market return:

Rjt+1 = constant+ β̃j ×Rmt+1 + γj ×
(
Rmt+1

)2
+ εt+1. (12)

4It is evident that my measure of curvature is related to the coskewness measure of Harvey & Siddique
(2000). I emphasize that it is merely a means to illustrate both the pervasive deviations from a linear
relationship and the systematic relationship between tail exposure and CAPM alphas. Using the measure
does not imply or assume that coskewness it the true pricing model. In fact, one obtains similar results
when using alternative measures for g(Rm), such as a piece-wise linear function, a quartic (Rm)4-term,
or sensitivity to realized variance. I prefer to use the quadratic g(Rm) due to its simplicity to capture
co-movement in both tails. In contrast to prior studies, I do not use any of these measures for pricing or
for quantifying risk premia. Instead, the risk premia are inferred from the options market. Hence I use
the term curvature instead of coskewness to highlight the different interpretation of the relationship.
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Figure 2: CAPM alphas and curvature for Ivol-sorted portfolios. The figure plots
the estimated CAPM alphas from (11) against the estimated γ coefficients from (12). The left plot
shows results for value-weighted returns of the Ivol-sorted stock portfolios, and the right shows the
equal-weighted analogue. The blue diamonds mark the first portfolio comprised of the low Ivol stocks,
and the red circles the tenth portfolio that contains the high Ivol stocks at each date. The legend reports
the correlation between the alphas and γ’s of each plot. Returns are monthly and the time period is
1996-2019.

The additional γ parameter measures the curvature of the relationship between Rj and Rm.

Figure 2 illustrates the results, and one observes a strong negative relationship between

a portfolio’s CAPM alpha and its curvature γ. The high Ivol portfolio has a highly positive

curvature and hence tends to outperform relative to the CAPM both when the market has large

negative and large positive returns, while the opposite is true for the low Ivol portfolio. Hence,

the CAPM errors indeed have a non-linear relationship g(Rm) that is inversely related to the

pricing kernel in (10).

This curvature pattern, which is illustrated graphically in Figure 1, has an analogue in the

options market: The low Ivol portfolio qualitatively resembles the payoff of a short straddle,

while the high Ivol portfolio resembles a long straddle. Empirically, it is well-documented that

the Ivol anomaly as well as short straddles earn excess returns relative to the CAPM on average,

while the opposite is true for high Ivol and long straddle, respectively. In the presence of a U-

shaped M(Rm) the low Ivol portfolio is particularly risky, while the high Ivol portfolio offers

a hedge. To foreshadow the results, this property is exactly what the option-implied pricing

kernel below will capture and price correctly.
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C. Evidence for equities and other asset classes

C.1. Approach and Data

Starting with US equities, my goal is twofold. On the one hand, I want to identify and study

prominent anomalies that have strong curvature patterns. For this, I start with the 95 sorting

variables considered in Gu et al. (2020). While I will discuss the results in more detail later, for

now, to motivate my sample selection, I note that most portfolio sorts where the sorting variable

is based on market data (stock prices and trading volume) have strong negative curvature

patterns, while accounting data based sorts do not. Out of those sorts with negative curvature

patterns, I select the most prominent anomalies, and include the remainder in the internet

appendix. On the other hand, I want to study other prominent anomalies without any curvature

pattern, i.e., well-known accounting based anomalies.

As a result, my benchmark data includes portfolios of stocks sorted on their CAPM beta

(sometimes referred to as “betting-against-beta”), volatility (Vol) and idiosyncratic volatility

(Ivol) as in Ang et al. (2006b), past maximum daily returns (Max) as in Bali et al. (2011), 12m-

1m momentum as in Jegadeesh & Titman (1993), turnover (Turn) as in Datar et al. (1998), and

days with zero trading volume (Ztrade) as in Liu (2006). Finally, I add beta w.r.t. changes in the

VIX index (β∆VIX) as in Ang et al. (2006a), since the idea behind their variable is to measure

exposure to systematic variance risk, which is related to the variance-risk based explanation in

this paper.

As further common test assets that largely do not have any curvature patterns, I include

portfolios sorted on size, book-to-market (B/M), investment (Inv), profitability (Prof), accru-

als (Acc) and industry portfolios, each calculated following the definition on Kenneth French’s

website. Return data are from CRSP, accounting data from COMPUSTAT, and factor returns

are taken from Kenneth French’s website. Returns are monthly and calculated such that they

match the timing of the option expiration. For each variable I sort stocks in decile portfo-

lios. Further details regarding the calculation of characteristics and the portfolio formation are

provided in Appendix D.

To get more out-of-sample evidence I use international stock market data. The sample is

from the Compustat Global Securities database and comprises 16 developed European markets.5

5The countries are Austria, Belgium, Denmark, Finland, France, Germany, Great Britain (the United
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I focus on European countries, since my approach requires a representative stock market index

as well as an active options market to calculate the option-implied pricing kernel. All values are

in USD, and the European factor data is again obtained from the Kenneth French’s website.

The data is from 2002-2019, which matches the available EuroStoxx 50 options data.

For options, I construct four straddle portfolios with initial moneyness K/S0 ∈ {0.90, 0.95,

1.00, 1.05}. At each date, I use the S&P 500 call and put option with moneyness closest to the

target moneyness. For the portfolios where one of the two options is in-the-money, I verify that

the recorded option prices are very close to a synthetic option price calculated using the implied

volatility of the second, out-of-the-money option. Since both excess returns of long straddles

and their CAPM alphas are negative on average, I consider a short position. Straddles are

particularly suited to study the tail exposure, since they naturally have a strong convex return

relationship with the market.6

For commodities, I use returns to commodity spot indices from the Commodities Research

Bureau, obtained from Bloomberg. This includes the Spot Index, and six sub-indices on Metals,

Textiles, Industrials, Foodstuffs, Fats and Oils, and Livestock.

C.2. Results

To quantify the curvature patterns, I first run regressions (11) and (12) for each portfolio. Then,

for equities, I calculate the correlation between αj from (11) and γj from (12) across the ten

portfolios of each strategy, both for value-weighted (VW) and equal-weighted (EW) portfolios.

For options and commodities I calculate the correlation across the respective four and seven

portfolios.

The results in Panel A of Table 1 show that for portfolios sorted on Beta, Vol, Ivol, Max,

Mom, Turn, Ztrade, and β∆VIX there is a strong negative correlation between the portfolios’ α

and γ. Furthermore, the correlation is stronger for equal-weighting and often close to −1.

To appreciate the economic magnitude of these patterns, Panel F in Table 1 presents the

γHML of the high-minus-low (HML) portfolio. Consider for example the case of Ivol. The

Kingdom), Italy, Ireland, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, and Switzer-
land.

6Note that the fact that M is derived from the same options data does not necessarily imply that M
prices these returns correctly. Only if the return density ft(Rt+1) used for the estimation in (13) below
is the true one, or at least close to it, M will also price option returns.
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Table 1: Curvature Patterns for Various Asset Classes

Panel A-E show the correlation coefficient ρ(α, γ) between the CAPM alpha from (11) and the curvature
parameter γ from (12) across portfolios in the first row of each panel. For equities, the correlation
is calculated across the ten portfolios of each sort. VW denotes value-weighted portfolios, and EW
denotes equally-weighted portfolios. For options and commodities, the curvature is calculated across the
respective four and seven portfolios. For a more detailed description of the portfolio calculation, see
Appendix D. Panel F shows the magnitude of curvature parameters γ from (12) for the value-weighted
portfolios from Panel A. The first two rows show the lowest and highest γ for each sort, while the last
row shows the γ for the high-minus-low (HML) portfolio. t-statistics (in parenthesis) are adjusted for
heteroscedasticity and autocorrelation (Newey & West 1987).

Panel A: US Equities with curvature patterns

Beta Vol Ivol Max Mom Turn Ztrade β∆VIX

VW -0.75 -0.85 -0.73 -0.94 -0.76 -0.68 -0.70 -0.75

EW -0.99 -0.96 -0.93 -0.95 -0.89 -0.97 -0.96 -0.94

Panel B: Other Equity

Size B/M Inv Prof Acc Industry

VW -0.61 -0.10 -0.43 -0.29 -0.28 -0.54

EW -0.06 -0.08 -0.58 -0.25 -0.12 -0.03

Panel C: European Equity

Beta Vol Ivol Max Mom Turn Ztrade β∆VIX

VW -0.78 -0.89 -0.71 -0.83 -0.80 -0.66 -0.70 -0.77

EW -0.97 -0.97 -0.96 -0.95 -0.94 -0.89 -0.89 -0.76

Panel D: Options Panel E: Commodities

-0.63 -0.88

Panel F: Magnitude of Curvature Patterns for VW from Panel A

Beta Vol Ivol Max Mom Turn Ztrade β∆VIX

Min(γ) -1.50 -1.57 -0.87 -1.57 -0.79 -1.32 -1.00 -0.78
(-4.01) (-4.25) (-3.15) (-5.61) (-4.63) (-4.56) (-3.58) (-2.32)

Max(γ) 2.05 2.75 4.45 2.51 3.01 1.48 1.41 1.23
(2.36) (3.21) (6.11) (3.93) (2.28) (2.51) (2.45) (2.21)

γHML -3.55 -4.32 -5.33 -4.02 -2.59 -2.16 -1.89 -1.30
(-3.75) (-4.63) (-6.83) (-5.46) (-1.66) (-3.22) (-2.81) (-1.75)

γ = −5.3 implies that for a for a Rm = ±10% the Ivol HML portfolio is expected to under-

perform the linear relationship by −5.3× 0.12 = −5.3%, and for a relatively large Rm = ±20%

the non-linearity amounts to −5.3× 0.22 = −21.1% per month.

The documented correlation between alpha and curvature across portfolios confirms that

there is a systematic pattern, and that these sorts are systematically related to an additional
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source of risk besides the linear market factor. If a negative γHML would result just from chance,

it would likely not appear jointly with the correlation pattern across all ten portfolios. On the

flip side, there are a few sorts that exhibit a correlation pattern, but the γHML is insignificant.

This could stem from a non-monotonic exposure across portfolios, and the online appendix

presents an example.

Another interesting insight from Panel F of Table 1 is that the sorts based on β∆VIX exhibit

the lowest in γHML. This finding is surprising, since β∆VIX should measure an exposure to

systematic variance, and one might hence expect strong dependence in the tails of the return

distribution. Section V revisits this point and shows to what extent β∆VIX indeed measures

exposure to (monthly) systematic variance risk.

Panel B of Table 1 shows that for size, book-to-market, profitability, and accruals portfolios,

there is no, or even a positive, relationship between α and γ. For investment, and industry-

sorted portfolios there is a negative relationship for the value-weighted portfolios, but it is not

as strong as for the sorts in Panel A. Turning to European stocks, the results in Panel C confirm

the α−γ correlation pattern found in US data. Lastly, Panel D and E document the same results

for straddles and commodities. While several studies have documented downside-dependence

for some anomalies7, the novel result here is the upside-dependence. Moreover, Table IA.4

documents that the curvature patterns are also obtained when estimating a piece-wise linear

function that allows for different coefficients for upside and downside dependence, emphasizing,

that the relationship is really convex/concave in both tails and not mechanically induced by

the (Rm)2-term.

Finally, turning to the curvature patterns in the full set of all 95 sorting variables considered

in Gu et al. (2020), the results paint an interesting picture. All accounting based sorts, which

are the vast majority of sorts, display no strong negative curvature patterns. In contrast, most

sorts based on market data (prices and volume) do have strong negative curvature patterns. In

addition to the variables studied in Panel A of Table 1, this includes several other measures

of momentum and stock liquidity. In total, 16 out of 22 sorts that use only market data have

strong curvature patterns. Moreover, all of the remaining six sorts of the group have low and

insignificant alphas in the sample, and hence my model would also not predict them to have

significant curvature patterns. For brevity, all details are relegated to Table IA.1.

7See, e.g., Boguth et al. (2011), Lettau et al. (2014).
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III. Pricing Kernel Estimation

This section briefly explains the approach for estimating the pricing kernel as a function of stock

market returns, estimation of conditional risk-neutral and physical return densities, discusses

data sources, and presents the estimation results.

A. Approach

It is well known that the absence of arbitrage implies the existence of a pricing kernel, or

stochastic discount factor, that prices all assets. This paper studies the (non-linear) projection

of the pricing kernel onto stock market returns, defined as:

Et[Mt+1|Rmt+1] =
1

Rft

f∗t (Rmt+1)

ft(Rmt+1)
, (13)

where f∗t (Rmt+1) and ft(R
m
t+1) denote the conditional risk-neutral and physical density of the

ex-dividend market Rmt+1, respectively, and Rft is the gross risk-free rate. This object is the

expected value of the pricing kernel in t + 1, conditional on observing a given return Rmt+1,

and hence M(Rm) is only a function of Rm. For brevity, I use the shorthand notation M to

denote the ex ante expectation, and Mt+1 to denote realizations. Furthermore, M without

superscript refers to the option-implied estimate from (13), and I use specific superscripts to

denote alternative specifications.

To estimate f∗ and f I use standard tools from the literature which I next briefly summarize.

The interested reader is referred to Appendix A for more details and descriptive statistics. First,

for each month, I extract f∗ from S&P 500 option prices, using the classical results of Banz &

Miller (1978) and Breeden & Litzenberger (1978). This method is standard, and the obtained

densities are truly conditional as they reflect only option information from a given point in time.

The data is from OptionMetrics and ranges from 1996-2019. Second, to construct f , I use a

method often referred to as “filtered historical innovations”, which is semi-parametric and the

most common methodology in the literature on pricing kernel estimation.8 Data is daily S&P

500 returns obtained from CRSP.

8See, e.g., Rosenberg & Engle (2002), Barone-Adesi et al. (2008), Christoffersen et al. (2013), Faias
& Santa-Clara (2017) or Christoffersen et al. (2022).
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Third, to make ft a conditional density, I require a conditional volatility forecasts. Since

this is a key ingredient for the estimation of M (Sichert 2023), this paper spends some effort to

obtain a good model to forecast volatility.

There is an extensive econometric literature on volatility modeling and forecasting. By

now it is generally understood that models based on high frequency realized variances (RV )

outperform other models, as e.g., the standard GARCH models. I follow Bekaert & Hoerova

(2014) and compare out-of-sample performance of numerous state-of-the art RV models for the

S&P 500 at the one month horizon. The best RV model contains realized jumps and the VIX as

predictors. The details of the model specification and estimation are provided in the Appendix

B, and alternative RV models are included in the robustness Section F.

Throughout the paper, I will refer to the variance forecast from t to t+ 1 (21 trading days)

as expected variance over the next month, denoted as σ2
t . Lastly, it is important to note that

in the following, all quantities in (13) are calculated in a rolling window fashion, i.e., using only

data available up to date t, and hence M is estimated in real time.

The benchmark approach estimates f∗ only over the range of strikes where options data

exists. In the sample, the realized return is never lower than the lowest observed strike, and

hence the extrapolation of the left tail is not relevant for the pricing results below. However,

high positive returns do exceed the highest observed strike nine times in the sample, on average

by 1.2 percentage points. Therefore a robust way of extrapolating either f∗ or M in the right tail

of the distribution is required. My benchmark approach is to simply extrapolate the observed

M linearly. Alternatively, I use the ratio of the cumulative return density in the tails that is

not covered by the options data. Formally:

M(Rright tail) =
(

1− F ∗t
(
Rmaxt,t+1

))
/
(

1− Ft
(
Rmaxt,t+1

))
, (14)

where Rmaxt+1 correspond to the highest available strike at date t, and F denotes the cumulative

density function (CDF). This ratio provides an indication of the behavior of M in the tail, and

it can be interpreted as the average M in that region.

These extrapolation approaches of M are more robust then extrapolating f∗ by “tail fitting”,

which makes the estimated M in the tail strongly dependent on guessing the right parametric

distribution for the tails. I test alternative ways to extrapolate M - but also f∗ - in the
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robustness section.

B. Estimation results

Figure 3 presents the estimated pricing kernels M for each month, grouped by the 24 years in

the sample. The pricing kernel estimates are relatively steep on the left, and predominately

U-shaped. The U-shape is most pronounced in times of high market volatility, e.g., around the

2000’s and during the financial crisis and its aftermath 2008-2011. In times of low volatility, the

estimates sometimes have a hump around zero, which is likely caused by a too high volatility

forecast (see Sichert (2023) for a more detailed discussion of this issue). The argument is

consistent with the observation that this hump is most pronounced in the years 2017-2018,

where both market volatility and the VIX were at their all time low. Such an all time low of

volatility is hard to capture with an out-of-sample prediction, where the model never saw these

low levels in the estimation. Nevertheless, most estimated M tend upwards towards their right

tail.

The steepness of M on the left is consistent with the highly negative returns to S&P 500 put

options (Broadie et al. 2009, among others). The increasing part on the right is consistent with

the negative average returns of out-of-the-money S&P 500 call options (Bakshi et al. 2010). In

the literature on the cross-section of stock returns, the steepness of M on the left is consistent

with evidence on the importance of downside risk. On the contrary, the implications for stock

returns of the increasing part on the right has received little attention, but will be the focus of

the following analysis.
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Figure 3: Pricing kernel estimates. The figure shows the natural logarithm of estimated
pricing kernels. Standardized returns = Rmt+1/σt are on the horizontal axis. The horizon is one month.
The dotted blue line connects the points, which depict the ratio of the CDFs of the tail from (14), with
the corresponding pricing kernels.
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IV. Pricing Results

A. Approach

To test the pricing performance of M , I study Euler equation errors in the following, which is a

non-parametric and standard way to test a candidate pricing kernel (see, e.g., Cochrane 2005).

Euler equation errors can economically be interpreted as pricing errors, and are commonly

referred to as “alphas”. The Euler equation reads

Et[Mt+1R
j
t+1] = 0 (15)

for the excess return Rj of each asset j. Empirically, I calculate alphas as:

αj =
1

T

T∑
t=1

Mt+1R
j
t+1. (16)

The series of realized Mt+1 is calculated as described in Section C below. Note that the alphas

for factor models from (16) are virtually the same as from the more common regression-based

model tests.9

To compare the pricing results to standard benchmark models, I also calculate the alphas

of the CAPM and the Fama & French (1993) 3-factor model (FF3). The pricing kernel in the

CAPM is a linearly decreasing function of the market return. Also the FF3 model is virtually

monotonically decreasing in the index, as the other two factors are virtually orthogonal to the

market (depicted in Figure 5 below). Finally, I consider the coskewness (CoSkew) factor of

Harvey & Siddique (2000) in addition to the market. For the interested reader, the details on

the calculation of the pricing kernel in the linear factor models can be found in Appendix C.2.

As test assets, I use the portfolios described in Section C.1. For each strategy, I form the

high-minus-low (HML) portfolio such that the strategy produces a positive CAPM alpha. In

most cases this also maximizes the curvature exposure. Since industry portfolios have no natural

HML sorting, I go long (short) the portfolio with the highest (lowest) in-sample CAPM alpha,

to keep the analysis simple. All portfolios are value-weighted in the benchmark analysis.

9To be precise: αEuler = αregression/Rf . IA.1.4 shows this relationship for the CAPM. A general
proof can be found in Dahlquist & Söderlind (1999).
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For commodities I form a long-short portfolio that maximizes CAPM alpha (as well as

curvature) which is long the portfolio with the highest CAPM alpha, and short the one with

the lowest CAPM alpha. Finally, since all straddles have negative curvature, I take a short

position in the at-the-money straddle financed at the risk-free rate, since it has both the highest

CAPM alpha and the most negative curvature.

B. Monotonically decreasing pricing kernel and upside risk

To isolate the increasing part of M , and therefore the upside-risk premium, I calculate a strictly

monotonic decreasing counterpart Mmon of each estimated M . A graphical illustration can be

found in Figure 1, where the solid black line is extended by the dotted line to the right of the

minimum. To be precise, for a given estimate M , I first find the global minimum in the area

of positive returns. Next, graphically speaking, I discard the entire estimate to the right of

this minimum, and then linearly extrapolate the remainder using the slope coefficient from the

CAPM. The difference in pricing errors between Mmon and M for an asset measures the its

upside risk premium. Formally:

Upside risk premiumj =
1

T

T∑
t=1

(
Mmon
t+1 −Mt+1

)
Rjt+1. (17)

A formal derivation of the relationship is provided in the IA.1.2.

C. Realized pricing kernel

In order to assess the pricing performance of M using (16), one needs to calculate a realized

M . Each line in Figure 3 is an ex ante functional form, which describes how the random future

realized Rmt+1 maps into a realized Mt+1. Hence, for each observed return Rmt+1 from date t to

t + 1, there is a corresponding realized Mt+1. Figure 4 illustrates this mapping for a selected

date. The ex ante M was calculated on June 18, 2008. The observed log return on July 19,

2008, was −5.50%, which corresponds to a realized Mt+1 = exp(−0.22) = 0.80.
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Figure 4: Calculation of realized pricing kernel. The figure illustrates the calculation of
the realized pricing kernel on a selected date.

D. Results for US equities

For the pricing of equities, I split the analysis into those strategies that have a strong α − γ

correlation, and those that do not. Table 2 present the main pricing results for both groups.

I follow Burnside (2011) and bootstrap statistical significance.10 The first column in Panel A

shows that the option-implied M prices all tabulated anomalies. The alphas are economically

low and statistically insignificant. The second column column shows the estimated upside risk

premium. For all anomalies, this upside risk premium is large, and between 29% of the CAPM

alpha in the case of β∆VIX and 89% for the low beta anomaly. On average, the upside risk pre-

mium is 4.0% p.a., and almost half of the CAPM alpha. Furthermore, the upside risk premium

is always statistically significant. Hence, it is an important risk factor for understanding the

returns to those portfolio sorts.

The third and fourth column show the CAPM and FF3 alpha, respectively. Not all of them

are statistically significant for two reasons. First, the level of alphas is lower than in previous

10In particular, N=50,000 i.i.d. bootstrap draws are used. The draws are i.i.d., since the Ljung-Box
test at lags up to 30 rejects auto-correlation in the time series. I verified for the CAPM and the FF3 that
the bootstrapped p-value is similar to a regression-based p-value obtained using Newey & West (1987)
adjusted standard errors, and often more conservative.
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Table 2: Pricing Results for Equity Portfolios

The table shows the pricing errors (alphas) for M , the CAPM, the Fama & French (1993) 3 factor model
FF3, and the CAPM plus the coskewness factor of Harvey & Siddique (2000) all calculated via (16), and
the upside risk premium (RP) calculated via (17). Returns are from the high-minus-low value-weighted
portfolios. The symbols ∗∗∗, ∗∗ and ∗ indicate that values are significantly different from zero at the 1%,
5%, and 10% significance levels, respectively. The significance levels are obtained from 50,000 (pairwise)
bootstrap draws from the sample of alphas (differences in alphas). All numbers are annualized in percent.

∗∗∗ M ∗∗∗ Upside RP CAPM∗∗∗ FF3∗∗∗ CoSkew∗∗∗

Panel A: Equity Portfolios with Curvature Patterns

Beta -0.65∗∗∗ 6.26∗∗∗ 7.02∗∗∗ 8.03∗∗∗ 4.83∗∗∗

Vol 3.01∗∗∗ 5.15∗∗∗ 11.29∗∗∗ 11.18∗∗∗ 8.83∗∗∗

Ivol 2.92∗∗∗ 4.44∗∗∗ 10.74∗∗∗ 10.30∗∗∗ 8.57∗∗∗

Max 1.14∗∗∗ 3.80∗∗∗ 8.05∗∗∗ 7.43∗∗∗ 6.24∗∗∗

Mom 1.65∗∗∗ 3.73∗∗∗ 10.39∗∗∗ 13.09∗∗∗ 10.15∗∗∗

Turn 3.88∗∗∗ 3.41∗∗∗ 8.54∗∗∗ 7.33∗∗∗ 5.86∗∗∗

Ztrade 4.00∗∗∗ 3.14∗∗∗ 8.36∗∗∗ 7.33∗∗∗ 6.24∗∗∗

β∆VIX 3.17∗∗∗ 2.04∗∗∗ 6.91∗∗∗ 7.00∗∗∗ 5.40∗∗∗

Avg 2.39∗∗∗ 4.00∗∗∗ 8.91∗∗∗ 8.96∗∗∗ 7.02∗∗∗

Panel B: Other Equity Portfolios

Size 1.20∗∗∗ 0.10∗∗∗ -0.01∗∗∗ -0.39∗∗∗ 0.24∗∗∗

B/M 1.53∗∗∗ -1.19∗∗∗ 1.19∗∗∗ -2.75∗∗∗ 0.47∗∗∗

Inv 3.60∗∗∗ -0.68∗∗∗ 3.50∗∗∗ 2.20∗∗∗ 3.09∗∗∗

Prof 5.90∗∗∗ 0.25∗∗∗ 6.44∗∗∗ 6.74∗∗∗ 6.11∗∗∗

Acc 3.55∗∗∗ 0.04∗∗∗ 3.65∗∗∗ 3.59∗∗∗ 3.77∗∗∗

Industry 5.90∗∗∗ 2.81∗∗∗ 7.90∗∗∗ 8.60∗∗∗ 5.69∗∗∗

studies, since it is well-known that alphas of many anomalies decrease in the later sample.

In addition, the bootstrap tends to be conservative relative to using Newey & West (1987)

adjusted standard errors from regressions, and this is particularly true for the FF3 model.11

Nevertheless, the average alpha is significant at the 5% level for both the CAPM and FF3.

Furthermore, the pricing error of M is always much lower than those of either the CAPM or

FF3 (and the difference is statistically significant, see Table IA.5).

The last column shows that the CAPM plus coskewness factor cannot price most of the

11This can for example be seen when considering that a regression based FF3 test leads to a t-statistic
of 2.77 for Vol, 2.88 for Ivol, and 3.10 for the average alpha, which would all be significant at the 1%
level. Furthermore, this study uses open prices from the third Friday to match the option expiry timing.
Using closing prices at the settlement dates would increases annual alphas on average by 2 percentage
points and t-statistics by 1. These results are consistent with Polk et al. (2019), who document that
anomalies accrue mostly during trading hours, and have the opposite sign overnight.
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anomalies. The decrease in alpha for Beta, Vol and Ivol is consistent with the results in Schneider

et al. (2020). Nevertheless, many other alphas do not decrease relative to the CAPM, and the

average alpha is significant at the 5% level.

Switching the attention to Panel B of Table 2, one can make several observations. First, some

prominent sorts such as size, B/M or investment have relatively low alphas in the recent sample,

which has been already been documented in the literature. Second, M prices all portfolios

similarly well as the factor models. For Size, B/M, Inv, Prof, and Acc the pricing errors for M

are very close to those for CAMP and FF3. For the industry portfolios, the pricing error of M

is insignificant, but relatively large. Furthermore, there is a significant upside risk premium of

2.8% p.a., which is about 32% of the CAPM alpha. This finding is consistent with both the

negative correlation between α and γ in Table 1, and the findings of Dittmar (2002).12

In sum, given that M is estimated from options data only and without any cross-sectional

stock return information, the results are very encouraging. They further suggest that many

anomalies are only anomalies for linear models, and do not exist if the pricing kernel is allowed

to be non-linear, and even non-monotonic to capture upside risk.

E. Results for other asset classes

Next, I extend the analysis to the other asset classes, and the results are presented in Table 3.

For European equities I calculate M analogously to the US, using options and return data for

the EuroStoxx 50, and the resulting M is again largely U-shaped (see Figure IA.1).

Panel A of Table 3 shows that M again prices returns of portfolio sorted on Beta, Vol,

Ivol, Max, Turn, and Ztrade. All alphas are close to zero and insignificant. In contrast, these

portfolios have large and significant alphas relative to the CAPM and FF3. Momentum is an

exception, but the pricing error of M is still half of that of the factor models. The last column

again shows a large and significant upside risk premium. On average, it is 5.6% p.a., or almost

half of the CAPM and FF3 alphas.

The results in Panel B show that M also prices returns to short at-the-money S&P 500

12Dittmar (2002) shows that a cubic M(Rm) can price industry portfolios, but notes that the resulting
shape of M is inconsistent with standard utility theory. He further shows that imposing a monotonically
decreasing M(Rm) that is consistent with standard utility theory significantly worsens the pricing perfor-
mance. Both results together imply that the upside risk is crucial for explaining the returns, consistent
with my results.
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Table 3: Pricing Results for European Equity, Option Straddles and Commod-
ity Portfolios

The table shows the pricing errors (alphas) for M , the CAPM, the Fama & French (1993) 3 factor model
FF3, and the CAPM plus the coskewness factor of Harvey & Siddique (2000) all calculated via (16), and
the upside risk premium (RP) calculated via (17). Returns are from the high-minus-low value-weighted
portfolios. The symbols ∗∗∗, ∗∗ and ∗ indicate that values are significantly different from zero at the 1%,
5%, and 10% significance levels, respectively. The significance levels are obtained from 50,000 (pairwise)
bootstrap draws from the sample of alphas (differences in alphas). All numbers are annualized in percent.

M ∗∗∗ Upside RP CAPM∗ FF3∗∗ CoSkew∗∗

Panel A: European Equity

Beta -2.51∗∗∗ 6.72∗∗∗ 9.34∗∗∗ 8.83∗∗∗ 9.09∗∗∗

Vol 1.61∗∗∗ 5.91∗∗∗ 13.08∗∗∗ 14.42∗∗∗ 11.57∗∗∗

IVOL 1.54∗∗∗ 5.47∗∗∗ 12.68∗∗∗ 14.13∗∗∗ 11.15∗∗∗

Max -0.61∗∗∗ 5.66∗∗∗ 10.50∗∗∗ 11.69∗∗∗ 9.18∗∗∗

Mom 12.74∗∗∗ 6.04∗∗∗ 24.35∗∗∗ 25.40∗∗∗ 24.16∗∗∗

Turn 3.52∗∗∗ 6.19∗∗∗ 15.11∗∗∗ 15.39∗∗∗ 14.08∗∗∗

Ztrade 3.35∗∗∗ 6.19∗∗∗ 14.96∗∗∗ 15.25∗∗∗ 13.95∗∗∗

β∆VIX 0.98∗∗∗ 3.65∗∗∗ 9.28∗∗∗ 10.79∗∗∗ 9.40∗∗∗

Avg 2.58∗∗∗ 5.73∗∗∗ 13.66∗∗∗ 14.49∗∗∗ 12.82∗∗∗

Panel B: Options

Straddle -0.74∗∗∗ 43.70∗∗∗ 81.42∗∗∗ 77.49∗∗∗ 78.37∗∗∗

Panel C: Commodities

HML -1.16∗∗∗ 3.50∗∗∗ 3.67∗∗∗ 2.84∗∗∗ 4.04∗∗∗

straddles well. The pricing errors are virtually zero and insignificant. For the CAPM and FF3,

however, they are large and significant. Moreover, the last column reveals a large upside risk

premium, which is more than half of the CAPM alpha. While it is well known that the CAPM

does not price option returns well, it is a new result that a substantial part of the pricing error

stems from upside risk. Finally, for commodities in Panel C one finds insignificant pricing errors

for M , and a sizable and mildly significant upside risk premium.

F. Robustness

The main parametric input in the estimation of M is the return density and the variance

forecast. I therefore present robustness with respect to various modeling choices made for the

estimation of M and present the results in Table 4. To keep the exposition concise I focus on the
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equity portfolios with a pronounced curvature pattern and summarize the pricing performance

by presenting the average alpha, i.e., the analogue to the line “Avg” in Panel A of Table 2.

Overall, the results are fully robust to any of the choices made above. In all specifications, the

pricing error for M is insignificant, and upside risk premium is estimated to be between 2.4%

and 4.9% p.a. Furthermore, in the cases where the upside risk premium is estimated lower

than the 4.0% of the benchmark approach, the difference stems from the fact that the M of the

alternative approaches are less U-shaped (not tabulated).

First, I test alternative methods to extrapolate M in the tail. The first alternative uses (14)

to extrapolate M in the region of high positive returns. The second alternative uses the method

suggested by Figlewski (2010) to “complete the tails” of f∗(R) using a generalized extreme

value (GEV) distribution.

Second, I test alternative approaches to model the physical density f(R). One alternative

is to use an extending window of shocks for the shocks Z in (33). A second alternative is to

use the skew t distribution of Azzalini & Capitanio (2003). The parameters of the distributions

are estimated with maximum-likelihood, and in addition, I make the parameters that control

skewness and kurtosis linear functions of σt, to account for the finding that higher moments

vary with market volatility (Gormsen & Jensen 2022).

Third, I present the results for alternative variance models, which rank behind the bench-

mark model in terms of variance forecasting accuracy (for details, see Appendix B). They are

variations of the benchmark model, where either only the VIX or jumps are included in the

model, or the estimation methodology is changed from weighted-least squares to OLS. Table 4

shows that the pricing errors for the alternative RV models slightly increase and the upside risk

premium (as well as the U-shape of the estimated M , not tabulated) slightly decreases with the

variance forecasting performance of the RV model.

Fourth, I calculate a weakly monotone Mmon, i.e., extrapolate to the right of the global

minimum with a slope of 0. This decreases the average estimated upside risk premium (Mmon-

M in the last column) by about 1.2 percentage point p.a. In other words, of the average 4.0%

risk premium, 2.8% stem from the increasing part of M , and 1.2% stems from the difference of

a flat versus a decreasing M in the right tail.

Finally, I present the results for equal-weighted portfolios, instead of value-weighted as in

the benchmark approach. This increases all alphas, but otherwise does not change the results
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Table 4: Robustness Pricing Results for Equity Portfolios

The table shows the pricing errors (alphas) for M , the CAPM, the Fama & French (1993) 3 factor model
FF3, and the CAPM plus the coskewness factor of Harvey & Siddique (2000) all calculated via (16), and
the upside risk premium (RP) calculated via (17). Returns are from the high-minus-low value-weighted
(last row: equal-weighted) of all portfolios in Panel A of Table 2. For a description of the model details
for each line see the main text. The symbols ∗∗∗, ∗∗ and ∗ indicate that values are significantly different
from zero at the 1%, 5%, and 10% significance levels, respectively. The significance levels are obtained
from 50,000 (pairwise) bootstrap draws from the sample of alphas (differences in alphas). All numbers
are annualized in percent.

∗∗∗ M ∗∗∗ Upside RP CAPM∗ FF3 ∗∗ CoSkew ∗

CDF extrapolation 3.44∗∗∗ 3.81∗∗∗ 8.91∗∗∗ 8.96∗∗∗ 7.02∗∗∗

GEV 3.50∗∗∗ 2.54∗∗∗ 8.91∗∗∗ 8.96∗∗∗ 7.02∗∗∗

f(R) - extending window 2.39∗∗∗ 3.05∗∗∗ 8.91∗∗∗ 8.96∗∗∗ 7.02∗∗∗

f(R) - Skew t 0.37∗∗∗ 4.92∗∗∗ 8.91∗∗∗ 8.96∗∗∗ 7.02∗∗∗

RV model w. VIX 3.71∗∗∗ 3.18∗∗∗ 8.91∗∗∗ 8.96∗∗∗ 7.02∗∗∗

RV model w. Jumps 3.39∗∗∗ 3.51∗∗∗ 8.91∗∗∗ 8.96∗∗∗ 7.02∗∗∗

RV model w. VIX, Jumps, OLS 3.54∗∗∗ 3.71∗∗∗ 8.91∗∗∗ 8.96∗∗∗ 7.02∗∗∗

Mweakly mon 2.27∗∗∗ 2.83∗∗∗ 8.91∗∗∗ 8.96∗∗∗ 7.02∗∗∗

EW portfolios 5.69∗∗∗ 3.19∗∗∗ 10.77∗∗∗ 10.89∗∗∗ 9.22∗∗∗

qualitatively.
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V. A Variance Risk-Based Explanation

Variance risk is arguably the most important risk factor for options. This section shows empiri-

cally that variance risk is also important for explaining in the cross-section of stock returns and

that it induces a non-monotonic projected pricing kernel. The following Section VI provides an

equilibrium foundation for this reduce-from approach.

A. Variance risk and U-shaped M

On a general level, the U-shaped estimates for M in Figure 3 show that investors are averse

against Rm realizations in both tails. In the option pricing literature stochastic variance is ar-

guably the most important risk factor for explaining option prices. Christoffersen et al. (2013)

show that priced variance risk is a viable explanation for the U-shaped pricing kernel. Their

model assumes a pricing kernel which is decreasing in Rm, and increasing in variance. The

latter feature generates the empirically well-documented variance risk premium. Furthermore,

their model assumes a U-shaped relationship between variance and returns, which I confirm

empirically below. Both assumptions together gives rise to the U-shaped projection. The struc-

tural model in Section VI provides an equilibrium foundation for this reduced-form modeling

approach.

To test the mechanism empirically, I augment the CAPM with a variance factor. Fortunately,

variance risk is a traded asset. In particular, it is well known that the VIX2 is the price of a

variance swap with 30 days to maturity.13 Since the VIX is calculated as the forward price,

I convert it into the spot price VIX2/Rf , which is equivalent to the price of the replicating

options portfolio. The pricing kernel then reads:

MV S
t+1 = at + bt ×Rmt+1 + ct ×

(
RV

(21)
t+1

V IX2
t /Rf,t

−Rf,t

)
, (18)

where RV
(21)
t+1 denotes the realized monthly variance of the market index from time t to t + 1,

13Strictly speaking it is only a close approximation. It has become standard in the literature to use the
VIX as a proxy for the price of the swap. See e.g. Cheng (2019) for a detailed discussion of these issues.
Furthermore, using a proprietary data set of quoted prices for S&P 500 variance swaps with one month
maturity ranging from January 1996 to October 2013, I verify that the VIX2 is a close approximation
of actual variance swap rate. The two series have a correlation of 99.1%, and the average level of swap
rates is 21.2% compared to an average VIX of 21.6% (both in VIX units).
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and hence the last term mimics the excess return on a variance swap (VS).14

After plugging (18) into (1) and conditioning down one obtains an expression for expected

returns, which one can then test by running the following regression:

Rjt+1 = αj + βj ×Rmt+1 + γj ×

(
RV

(21)
t+1

V IX2
t /R

f
t

−Rft

)
+ εt+1. (19)

Panel A of Table 5 presents the results for each HML equity portfolio portfolio, where t-statistics

are based on Newey & West (1987) adjusted standard errors. The results show that adding

the variance factor to the CAPM decreases the alphas significantly: all presented alphas are

statistically insignificant and the average decreases to 3.42% p.a. from 8.91% p.a. in Table

2. The last column shows that the estimated γ coefficients are negative for each long-short

portfolio. To illustrate the economic magnitude, first note that the average excess return of the

variance swap factor is −26.44% per month. Hence the γ for the average anomaly return of

−0.0157 implies a premium for systematic variance exposure of −0.0156 × −26.44% = 0.42%

per month, or 4.98% p.a. The highest variance risk premium is found for momentum with

−0.0406×−26.44% = 1.07% per month, or 12.88% p.a.

When turning to European equities in Panel B, one again finds a sizable decrease in alphas

which renders all of them insignificant. The estimated γ coefficients are similar in magnitude

as in the US return data. Furthermore, the pricing error for at-the-money S&P 500 straddles

in Panel D is an insignificant −45.75% p.a., relative to a significant 81.42% p.a. for the CAPM

in Table 2. The estimated exposure towards variance risk, γ, is large and significant, which is

probably not surprising given the abundant evidence that options, and in particular straddles,

are heavily exposed to variance risk.

Overall, a simple extension of the CAPM with a priced variance factor leads to a pricing

performance which is similar to the one of the option-implied M . To dissect the pricing perfor-

mance, Figure 5 sheds light on the relationship between Rm, and different measures for realized

variance. The top left plot shows that Rm has a U-shaped relationship with the contemporane-

14While there are different approaches to calculate the payoff of a variance swap, the most common
one in the literature is to use squared daily log returns. This paper uses five-minute returns throughout,
since this measurement is widely recognized to deliver a more precise estimate of RV . Since the average
RV from high-frequency returns is lower than the one obtained from squared daily returns, I scale my RV
to be at the same level on average, and hence the results are comparable to other studies. Nevertheless,
using squared daily returns to calculate the payoff delivers very similar results (see Table IA.6).
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Table 5: CAPM + Variance Swap Pricing Results for Equity, European Equity,
Commodity and Option Portfolios

The table shows alphas from regression (19), annualized in percent. t-statistics (in parenthesis) are
adjusted for heteroscedasticity and autocorrelation (Newey & West 1987). The estimated γ coefficients
are multiplied by 100 for readability.

∗∗∗ α ∗ β ∗ γ × 100

Panel A: Equity

Beta -0.04 (-0.01) -1.28 (-10.35) -2.15 (-1.58)
Vol 5.64 (1.09) -1.32 (-8.21) -1.57 (-1.59)
Ivol 4.74 (0.72) -1.16 (-6.11) -1.79 (-1.41)
Max 2.94 (0.52) -1.00 (-7.44) -1.52 (-1.40)
Mom -0.92 (-0.10) -0.88 (-4.22) -4.06 (-2.50)
Turn 6.70 (1.55) -0.86 (-8.84) -0.28 (-0.37)
Ztrade 5.01 (1.32) -0.85 (-9.04) -0.89 (-1.39)
β∆VIX 4.60 (1.43) -0.52 (-6.30) -0.65 (-0.96)

Avg 3.58 (0.97) -0.98 (-8.98) -1.61 (-2.11)

Panel B: European Equity

Beta -6.83 (-0.57) -0.85 (-9.73) -2.48 (-1.48)
Vol 2.24 (0.16) -0.53 (-3.41) -1.48 (-0.69)
Ivol 2.67 (0.19) -0.45 (-2.78) -1.35 (-0.61)
Max -0.81 (-0.07) -0.48 (-3.86) -1.59 (-0.92)
Mom -3.20 (-0.17) -0.50 (-2.31) -4.15 (-1.54)
Turn 5.59 (0.63) -0.71 (-8.96) -1.32 (-0.98)
Ztrade 5.58 (0.63) -0.71 (-8.98) -1.31 (-0.97)
β∆VIX 2.01 (0.17) -0.17 (-1.32) -1.11 (-0.66)

Avg 0.91 (0.09) -0.55 (-4.72) -1.85 (-1.22)

Panel C: Commodities

HML 2.84 (0.48) -0.00 (-0.01) -0.33 (-0.43)

Panel D: Options

HML -45.75 (-0.75) -2.24 (-1.16) -49.67 (-3.67)

ously realized monthly variance. The two black lines are regression lines fitted separately for the

domain of positive and negative returns. It is evident that the relationship is not monotonically

decreasing, but has a stylized U-shape. The bottom left plot shows that the same pattern is

found for the realized pricing kernel implied by (18).15

15The correlation between the realized M and the MV S is 49% and hence the replications is far from
perfect. However, to put this into perspective, the correlation between the full pricing kernel and its
projection in the equilibrium model below is 30%. In addition, other factors might contribute to the
replication error, such as noise in measurement, the pricing of variance risk could be non-linear, and
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Figure 5: Relationship between market return, factors, and pricing kernels. The
top left plot shows the relationship between monthly market return Rm and contemporaneous realized
monthly variance. The top right plot shows the relationship between Rm and the contemporaneous
change in the VIX index, ∆VIX. The bottom left plot shows the realized pricing kernel for the CAPM
+ variance swap return model from (19). The bottom right plot shows the CAPM and the Fama-French
three factor model projected onto market returns. The solid black lines are regression lines fitted in the
domain of positive and negative returns separately. The projected FF3 pricing kernel is calculated by
taking the average pricing in each decile of Rm.

Ang et al. (2006b) use a stock’s beta with respect to daily changes in the VIX index (β∆VIX)

as their measure of a stock’s exposure to changes in future expected variance. The top right

plot shows the relationship between Rm and the contemporaneous ∆VIX over the same time

lastly, there could be other risk premia embedded in the option-implied M such as for example jumps
or higher moment risk.
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period. It is evident that this relationship is monotonically decreasing. Furthermore, when

considering that γ values of the β∆VIX-sorted portfolios in Panel F of Table 1 are much lower

than for all other sorts, these findings strongly suggest that a systematic variance risk factor

based on β∆VIX captures neither curvature nor upside risk.

Taken together, this appears to be the reason why the β∆VIX-factor in Ang et al. (2006b)

cannot explain the Vol and Ivol anomaly, while my M and MV S can. Lastly, the bottom right

plot shows that the FF3 model projected onto index returns is also monotonically decreasing,

and therefore does not capture any upside risk premium.
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VI. Upside Risk in an Equilibrium Model

This section derives the pricing implications of a long-run risks type model with recursive

preferences where consumption growth and its variance feature GARCH type dynamics. Due

to the feedback process of high positive consumption shocks to variance, both large positive

consumption shocks and large positive stock returns are associated with large variance. In

equilibrium, the representative agent dislikes this increase in variance more than she likes the

associated positive consumption shock. Hence, these states are associated with high marginal

utility, the projected M is U-shaped, and there is upside risk.

A. Setup

The model setup follows the long-run risks framework of Bansal & Yaron (2004). The repre-

sentative agent has recursive Epstein & Zin (1989) preferences over total consumption. The

dynamics of fundamentals are:

xt+1 =ρxt + ρeσc,t+1ηx,t+1 (20)

gc,t+1 =µ+ xt + σc,t+1ηc,t+1 (21)

gd,t+1 =µ+ φxt + πσc,t+1ηc,t+1 + ρdσc,t+1ηd,t+1 (22)

σ2
c,t+1 =w + bσ2

c,t + aσ2
c,t(ηc,t − h)2 (23)

ηc,t+1, ηx,t+1, ηd,t+1 ∼ i.i.d. N(0, 1). (24)

The dynamics of the long-run growth component x and log consumption growth gc are identical

to those in Bansal & Yaron (2004). Dividends are modeled with an exposure π to consumption

shocks, which is absent in the original model, but included in many follow-up specifications, as

for example Bansal et al. (2012) and Schorfheide et al. (2018). The key innovation is to replace

the stochastic variance of the original model with the GARCH dynamics of Engle & Ng (1993),

where the shocks to consumption growth have a feedback effect on future variance. This effect

is symmetric around the parameter h, and hence both large positive and negative ηc lead to an

increase in future σ2
c (given the usual assumption of w, a, b > 0). This relationship is in contrast

to the usual modeling frameworks of either pure stochastic variance or Markov chains, where

32



-6 -4 -2 0 2 4 6
-2

-1

0

1

2

3

4

5

6

7

-8 -6 -4 -2 0 2 4 6
-3

-2

-1

0

1

2

3

4

5

6

7

Figure 6: Relationship between filtered consumption and variance shocks. The
figure plots contemporaneous shocks ηc to the consumption growth process and shocks ωc to the variance
process in the model of Schorfheide et al. (2018). Shocks are calculated using data and filtered state
variables provided by Schorfheide et al. (2018). The left plot is based on monthly consumption data from
Jan 1959 - Sept 2014, and the right plot on quarterly data from Jan 1947 - Sept 2014. ρ(ηc, ωc|ηc <> 0)
denotes the correlation between the shocks conditional on ηc being above or below 0, respectively. t-
statistics are in parenthesis. Black lines are regressions lines for positive and negative ηc, respectively.

the shocks to gc and σ2
c are assumed to be independent. The following section as well as Section

IA.6 provide empirical support for the GARCH modeling assumption.

B. Evidence supporting GARCH dynamics

In order to study the relationship between shocks to consumption growth and consumption

variance, one needs an estimate for the variance, since it is usually not observed. Schorfheide

et al. (2018) perform a Bayesian estimation of an augmented version of the Bansal & Yaron

(2004) long-run risks model, and one of their outputs is a filtered series of consumption variance.

Their model features stochastic variance, which resembles the dynamics of σ2
c,t+1 in (23), but

with an extra variance shock ωc,t+1 instead of the σ2
c,t(ηc,t − h)2-term. By rearranging the

dynamics in Equation (9) of Schorfheide et al. (2018), one can back out the contemporaneous

shocks ηc to consumption growth and shocks ωc to consumption variance.16

16I downloaded the code and data from the website from Dongho Song, whom I thank for sharing.
Further details are provided in the IA.6.1.
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Figure 6 plots the backed out ηc against the contemporaneous ωc, together with regression

lines and correlation coefficients conditional on positive and negative ηc, both for monthly and

quarterly data. It is evident that ηc and ωc have a stylized U-shaped relationship. This strongly

supports the GARCH dynamics assumed above, but is at odds with stochastic variance models,

where the two shocks are typically assumed to be independent.

Moreover, as a second source of evidence, I estimate the alternative GARCH specification

σ2
c,t+1 = w + bσ2

c,t + aσ2
c,t(a

+η2
c,tIηc,t>0 + a−η2

c,tI2ηc,t<0) (25)

that allows for different effects of positive and negative ηc innovations. The estimated coefficient

a+ is significant and larger than the coefficient a− (details in IA.6.2), which supports the

assumed dynamics.

C. Estimation and calibration

The parameters of the GARCH process for σ2
c in (23) are estimated via maximum likelihood.

The data are real monthly consumption growth per capita in the US from Jan 1959 - Dec

2019.17 The estimated parameters imply a relatively high persistence of 0.9966, which leads to

problems with the (numerical) solutions for some parameter combinations. I therefore slightly

lower the estimated b parameter, such that the persistence is 0.992, which is between the 0.987

used in (Bansal & Yaron 2004) and the 0.999 used in (Bansal et al. 2012).18 Furthermore, I

set π = 2.6 as in Bansal et al. (2012), and set φ = 1. All other parameters are the same as in

Bansal & Yaron (2004). Section IA.7 present an analysis of the effect of changes in parameters

on the main result.
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Figure 7: M in the model. The figure plots M , i.e., the pricing kernel projected on to market
returns Rm, in the modified Bansal & Yaron (2004) model with GARCH dynamics (left), and the original
model (right). In the right plot, the blue line represent the original model, while the dashed black line
represents a modified version that uses the same values for the parameters φ and π as the model with
GARCH dynamics in this paper.

D. Pricing implications

I solve the model numerically by iterating on the Euler equation, using a fine grid for the two

state variables, x and σ2
c .

19 For clarity, I denote the model’s unprojected pricing kernel as

Munproj , and the projection on the return on the aggregate dividend claim Rm again as M . In

the model, Munproj is given by:

ln(Munproj
t+1 ) = ln(δ)− γgc,t+1 − (γ − 1/ψ) ln

(
Vt+1/Ct+1

µt(Vt+1)/Ct

)
(26)

= ln(δ)− γ(µ+ xt)︸ ︷︷ ︸
constant

−γσc,t+1ηc,t+1︸ ︷︷ ︸
linearly decreasing in ηc

+ (γ − 1/ψ)︸ ︷︷ ︸
>0

ln

(
µt(Vt+1)/Ct
Vt+1/Ct+1

)
︸ ︷︷ ︸

U-shaped in ηc

, (27)

17Further details on the estimation are provided in the IA.6.2, as well as alternative GARCH dynamic
specifications.

18In addition, I adjust w such that the average σ2
c remains unchanged. Changing the persistence does

not affect the results qualitatively. I provide a detailed analysis and discussion of the sensitivity of the
main result with respect to all chosen parameters in IA.7.

19My solution builds on the code provided by Beason & Schreindorfer (2022), whom I thank for
sharing.
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Figure 8: Utility level and price-dividend ratio in the model. The figure plots the
natural logarithm of the ratio of utility level to consumption, ln(Vt+1/Ct+1), and the natural logarithm
of the price-dividend ratio, ln(Pt+1/Dt+1) in the solved model against the two state variables.

where Vt is the continuation value of the investor’s lifetime utility, µt(Vt+1) is the certainty

equivalent of the next period continuation value, γ is the coefficient of relative risk aversion, ψ

is the elasticity of intertemporal substitution, and δ is the time discount factor. The left plot in

Figure 7 shows M , which is a U-shaped function of Rm. In contrast, in the original model M

is monotonically decreasing, as shown in the right plot. In short, the U-shape stems from large

consumption growth shocks ηc leading to both high returns and high marginal utility.20

For a more detail understanding of origins of the U-shaped M , I will next go through all

relevant effects on Munproj and Rm. To begin with, note that the model has three shocks, but

only ηc is important for the result, because ηd is not priced, and ηx affects returns positively

and Munproj negatively, i.e., leads to a strictly downward sloping component in M . Hence one

only needs to understand the effects of ηc.

Next, consider the effect of ηc on Munproj , which can partially be studied analytically as

annotated in (27). While the first term on the right-hand-side is constant, the second term is

the standard consumption shock term which implies that ln(Munproj) decreases linearly in ηc.

20Technically, M depends on the two state variables xt and σc,t+1 (which is known at time t). For
ease of exposition, I fix xt and σc,t+1 at their median for the graphs. However, all studied relationships
are qualitatively unchanged for other σc,t+1 values, and for other xt values they are even quantitatively
the same (details in IA.7).

36



-4 -2 0 2 4
-0.2

0

0.2

0.4

0.6

0.8

1

-4 -2 0 2 4
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure 9: Relationship between consumption shocks, pricing kernel and re-
turns. The figure plots the relationship between consumption growth shocks ηc and the average
realized Munproj in the left plot, and the relationship between ηc and the realized market return Rm in
the right plot.

The third term implies a U-shaped relationship between ηc and Munproj , but this can only be

seen from the numerical solution. To understand the properties of the third term, one needs to

analyze the relationship between ηc and V/C. The left plot in Figure 8 shows that in equilibrium

the Vt+1/Ct+1 ratio is decreasing in σ2
c,t+2 (that is known at time t), which is consistent with

the original model.

In addition, recall that the variance dynamics imply that shocks to σ2
c have a U-shaped

relationship to ηc. Hence the future Vt+1/Ct+1 is inversely U-shaped in ηc, and the third term

in (27) is U-shaped in ηc,t+1. For negative ηc, all effects work in the same direction. For positive

ηc, the increasing part of the U-shaped effect from the third term dominates the decreasing linear

second term, and as a result, the overall relationship between ηc and Munproj is U-shaped, as

depicted in the left plot of Figure 9.
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Next, turning to returns, consider the effect of ηc on Rm. For this, note that

ln(Rmt+1) =gd,t+1 + ln

(
Pt+1/Dt+1 + 1

Pt/Dt

)
(28)

=µ+ φxt︸ ︷︷ ︸
constant

+ ρdσc,t+1ηd,t+1︸ ︷︷ ︸
uncorrelated with ηc

+ πσc,t+1ηc,t+1︸ ︷︷ ︸
linearly increasing in ηc

+ ln

(
Pt+1/Dt+1 + 1

Pt/Dt

)
︸ ︷︷ ︸

ambiguous in ηc︸ ︷︷ ︸
“largely increasing in” ηc

, (29)

where the third term implies a linearly increasing relationship, and the fourth term is only

available numerically. The aggregate relationship between ηc and Rm is depicted in the right

plot of Figure 9. For most of the (relevant) range of values of ηc, the relationship is monotonically

increasing.

Taking all effects together, a high positive consumption shock ηc on average leads to a

positive Rm due to a high positive dividend growth, but also to an increase in σ2
c , and hence a

high realized Munproj , which generates the U-shaped M depicted in Figure 7. In other words,

a high positive Rm is on average associated with an increase in the variance of fundamentals,

which the agent dislikes more than she likes the positive consumption growth associated with

it. Hence she wants to hedge against these states of the world, and assets that pay off well

in these states (positive curvature relative to Rm) will have low average returns and negative

CAPM alphas, and vice versa.
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VII. Conclusion

This paper provides a novel approach to understanding several prominent stock return anomalies

by using a pricing model extracted from option prices. The results show that a non-linear market

model can jointly explain cross-sectional stock return anomalies related to beta, (idiosyncratic)

volatility, liquidity, and momentum. A key part of the explanation is a new, negative upside risk

premium, which is estimated to be 4.0% p.a., or on average almost half of the CAPM alphas of

the anomalies. The same results are documented for European stock returns. Moreover, upside

risk is also prevalent in other asset classes, such as options and commodities.

The paper further documents that many cross-sectional stock return anomalies have a neg-

ative relation between their CAPM alpha and the curvature of their returns relative to the

market. This pattern is found for virtually all anomalies where the sorting is done based on

return-based characteristics. Qualitatively this pattern resembles the return profile of a short

straddle, and hence the large positive alphas on straddles and stock returns anomalies are con-

sistent. In contrast, anomalies based on accounting data have no noticeably curvature patterns.

The paper further provides a structural model that generates upside risk as a result of the

exposure to variance risk, and provides supporting evidence for the main mechanism of the

model. Empirically, the paper shows that the CAPM augmented by a second variance factor

can also explain the studied anomalies. After controlling for the two factors, the strategies

have only insignificant alphas left. Finally, this explanation is distinct from a coskewness based

explanation.
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Appendix

A. Details on the Pricing Kernel Estimation

A.1. Options data

The empirical analysis uses out-of-the-money S&P 500 call and put options that are traded

in the period from 02/01/1990 - 31/12/2019. I focus on the most liquid contract, namely the

standard third Friday contract (with AM settlement), in order to obtain a series of monthly

pricing kernels with a 30-day horizon. Next, only options with positive trading volume are

considered and the standard filters proposed by Bakshi et al. (1997) are applied. The options

data is cleaned further following the standard approach in the literature:

1. For each month, find the third Friday option series that has a remaining time to maturity

closest to 30 days. This follows the standard approach in the literature to use data from

Wednesdays, if available.

2. Remove all quotes that either have zero trading volume on the day of the price quote,

have best bid below 0.50, are more than 20 index points in-the-money, or violate the

standard no-arbitrage bounds considered by Bakshi et al. (1997).

Table A.1 presents descriptive statistics for the cleaned options data by standardized moneyness,

i.e., K̃ = ln(K/St)/σt. The implied volatility (IV) mildly shows the typical volatility smirk

pattern. The volume and open interest data show that the option contracts are highly liquid

and traded for a large range of moneyness levels.

A.2. Estimation of the risk-neutral density

The steps for the estimation of the risk-neutral density from options prices are:

1. Clean the data as described above.

2. Get risk-free rate from OptionMetrics, and interpolate linearly for the correct maturity.

3. Get the dividend yield data from OptionMetrics, and interpolate linearly for the correct

maturity (using the implied dividend yield from at the money call and put pair leads to

similar results, but the dividend yield estimates are more noisy).
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Table A.1: Options Data Descriptive Statistics

The table presents descriptive statistics for the cleaned S&P 500 options data. The details of the data
filters are listed in Appendix A.1. The first column shows the total number of contracts over the sample.
The second column shows the average implied volatility (IV) in % p.a. The third column shows the
average volume per contract, and the last column shows the average open interest per contract. The
data is all 30 day to maturity, out-of-the money, and 3rd Friday AM settled options contracts from
02/01/1996 - 31/12/2019.

K̃ = ln(K/S0)
σt

Contracts IV (% p.a.) Volume Open Interest

K̃ < −4 4,860 32.1 1,561 9,712

−4 < K̃ < −3 1,861 27.3 2,304 14,466

−3 < K̃ < −2 2,123 24.7 2,533 16,756

−2 < K̃ < −1 2,328 22.2 3,011 18,658

−1 < K̃ < 0 3,594 18.6 3,684 17,953

0 < K̃ < 1 3,687 16.0 3,229 15,971

1 < K̃ < 2 2,250 14.4 2,119 14,703

2 < K̃ 358 15.9 1,231 9,820

4. Transform mid-prices into implied volatilities using Black and Scholes (1973). In the

region of +/- 20 points from at-the-money, take a weighted average (by volume) of put

and call implied volatilities. The results remain unaltered if the implied volatility provided

by OptionMetrics is used.

5. Fit a fourth-order polynomial to the implied volatilities over a dense set of strike prices,

and convert back into call option prices using Black-Scholes.

6. Finally, numerically differentiate the call prices using (30) and (31) to recover the risk-

neutral return distribution:

1− F ∗(St,t+τ ) = − exp(rτ)
[∂CBS(St, X, τ, r, σ̂(St, X))

∂X

]
|X=St,t+τ

(30)

f∗(St,t+τ ) = exp(rτ)
[∂2CBS(St, X, τ, r, σ̂(St, X))

∂X2

]
|X=St,t+τ

(31)

A.3. Estimation of the physical return density

The represented approach for obtaining the conditional physical density f(Rt+1) is semi-parametric

and the most common methodology in the literature on pricing kernel estimation (see, e.g.,

Rosenberg & Engle (2002), Barone-Adesi et al. (2008), Christoffersen et al. (2013), Faias &
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Santa-Clara (2017), or Christoffersen et al. (2022)). This method is often referred to as “fil-

tered historical innovations” and it has several distinct advantages. First and foremost, it is

only semi-parametric as it only requires a minimum of parametric assumptions, preserves the

empirical patterns for moments higher than two and, last but not least, has a good fit to the

empirical distribution. Moreover, the only parametric input is a forecast of conditional volatility

(details in Appendix B), which can easily come from alternative models, and hence robustness

analysis is straightforward.

The starting point is a long daily time series of the natural logarithm of monthly returns on

the S&P 500 from 02/01/1990 - 31/12/2019, obtained from CRSP. The monthly return series

is then standardized by subtracting the sample mean return R̄ and afterwards dividing by the

conditional one month volatility σt. This yields a series of monthly return shocks Z:

Zt+1 = (Rt+1 − R̄)/σt. (32)

The conditional distribution ft+1 is then constructed by multiplying the standardized return

shock series Z with the conditional monthly volatility expectation σt:

ft(R+1) = f
(
R̄+ σtZ

)
. (33)

In this paper ft(Rt+1) is calculated using only index return data available up to date t, i.e.,

f is obtained fully out-of-sample. To find a trade-off between between using more recent and

potentially more relevant data on the one hand, and having as much data as possible for less

noise in f on the other hand, I use a rolling window of the past ten years of return data as a

compromise. The results are, however, fully robust to using a different window length or an

expanding window.

B. Realized Variance Modeling

B.1. Overview

The goal is to forecast monthly (21 trading days) volatility. Bekaert & Hoerova (2014) perform a

large-scale, out-of-sample performance comparison of numerous state-of-the art heterogeneous
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autoregressive (HAR) realized variances models for the S&P 500 at the one month horizon.

They find that two specifications perform best: the HAR model combined with either the VIX

index or jumps as additional predictors. Building on these results, I focus on these predictors.

For completeness, I also include the leverage effect considered in Bekaert & Hoerova (2014),

and I confirm their finding that it is the least important predictor. In addition, I employ two

recent advances from the literature that improve model performance. First, Bollerslev et al.

(2016) show both theoretically and empirically that including realized quarticity corrects for

measurement error in realized variance. Second, Clements & Preve (2021) show that estimating

the model with weighted-least squares (WLS) instead of OLS further improves out-of-sample

forecasts.

The following section briefly lays out the econometric framework, followed by the empirical

results. A more detailed discussion of each variable and its foundation in the literature can, for

example, be found in Bekaert & Hoerova (2014).

B.2. Econometric framework

In the following, daily realized variance RV
(1)
t is defined as the sum of N squared five-minute

log returns rt,i of day t:

RV
(1)
t =

N∑
i=1

r2
t,i. (34)

Weekly (h = 5) and monthly (h = 21) RV is calculated as RV
(h)
t = 1

h

∑h−1
j=0 RV

(1)
t−j . Further-

more, the daily jump J
(1)
t is defined as:

J
(1)
t = max(RVt −BV (1)

t · π/2, 0), (35)

where BV
(1)
t denotes the daily bipower variation:

BV
(1)
t =

N−1∑
i=1

|rt,i||rt,i+1|. (36)

Jumps for other frequencies are calculated as J
(h)
t = 1

h

∑h−1
j=0 J

(1)
t−j . The leverage effect at

different frequencies is defined as r
(h)−
t = min

(
r

(h)
t , 0

)
, where r

(h)
t = 1

h

∑h−1
j=0 rt−j . Lastly,
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following Bollerslev et al. (2016), daily realized quarticity RQ
(1)
t is defined as

RQ
(1)
t =

N

3

N∑
i=1

r4
t,i, (37)

and its multi-period analogue as RQ
(h)
t = 1

h

∑h−1
j=0 RQ

(1)
t−j .

Taking all variables together, the most general model specification considered in the following

(as well as in Bekaert & Hoerova 2014) is:

RV
(21)
t+21 =c+ αV IX2

t + (βd + βd,Q(RQ
(1)
t )1/2)︸ ︷︷ ︸

βd,t

RV
(1)
t

+ (βw + βw,Q(RQ
(5)
t )1/2)︸ ︷︷ ︸

βw,t

RV
(5)
t + (βm + βm,Q(RQ

(21)
t )1/2)︸ ︷︷ ︸

βm,t

RV
(21)
t

+γdJ
(1)
t + γwJ

(5)
t + γmJ

(21)
t + δdr

(1)−
t + δwr

(5)−
t + δmr

(21)−
t + εt+21.

(38)

Let R̂V
(21)
t+21 denote the out-of-sample forecast from the model estimated at day t using infor-

mation available up to that day. The paper then refers to the expected variance over the next

month, i.e., from day t+ 1 to t+ 21, as σ2
t = R̂V

(21)
t+21.

B.3. Model selection results

Next, I follow Bekaert & Hoerova (2014) and perform an out-of-sample model comparison of

different model specifications. The keep the analysis simple and not to be overwhelmed by the

large number of possible combinations of model specification and estimation method, I build

on previous results showing that RV combined with jumps J and the VIX usually perform

best. From this specification, I shut down either the VIX, J , or the RQ correction, or use OLS

instead of WLS. Furthermore, motivated by the results in Bekaert & Hoerova (2014) that using

single variables from a group of variables performs worse, all lags of one group of variables are

included or excluded together. Lastly, I add the leverage effect to several model specifications.

The data is S&P 500 spot prices obtained from Tickdata.com as in Bekaert & Hoerova

(2014) from 02/01/1990 - 31/12/2019. I use an initial burn-in period of six years, such that the

first out-of-sample forecast is available at the beginning of 1996. I then extend the estimation

window forward day by day. To measure model performance, I follow Bekaert & Hoerova (2014)
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and use root mean squared error (RMSE), mean percentage error (MPE) and out-of-sample R2

(R2
OOS) as metrics.

Table A.2 presents the results. Overall, one can see that WLS always leads to large improve-

ments over OLS, except for the specifications that include the leverage effect. Furthermore, the

specification without any adjustment to the estimation methodology (no RQ and OLS) has the

worst accuracy.

When it comes to model specification, I find that no model clearly outperforms in all metrics,

which is analogous to Bekaert & Hoerova (2014). Therefore, I follow their approach and employ

a ranking for each criterion, and calculate the average rank for each model in the last column.

The ranking produces a clear winner: the model which includes both the VIX and jumps J via

BV , estimated with WLS. This model ranks second in all metrics, while numerically being close

to the best value for each metric, which is reflected in its overall best average rank. Therefore, I

use this model as the benchmark model. The model with only the VIX is second best, with some

distance to the next best one, which is the winning model estimated with OLS, tied with the

model that only includes J . Similar to Bekaert & Hoerova (2014), I find that the leverage effect

is the least important predictor variable. The full model including all variables performs worst

(last two rows). Also when adding the leverage effect to the second best model the performance

ranks low (above the last two rows).

C. Pricing Kernel Calculation

C.1. Anchoring the Pricing Kernel

It is necessary to “anchor” (adjust) M for the pricing analysis, since otherwise E(Mmon) <

1/Rf , i.e., it is not a valid pricing kernel. Therefore, the raw, unadjusted pricing kernel M̃

is anchored such that it prices the CRSP value-weighted market index (RI in the following)

correctly. The corrected M is obtained from adding a constant a to M̃ , i.e.,

M = M̃ + a, (39)
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Table A.2: RV Model Statistics and Ranking

The table shows statistics of the out-of-sample volatility forecasting model performance. Parameters are
estimated using data from 02/01/1990 - 31/12/2019 using an extending window. Out-of-sample forecasts
start on Jan 02, 1996. The first three columns show out-of-sample RMSE, MPE, and R2

OOS . The next
three column show the rank of each model for each criterion. The last column averages over the ranks.
Bold font indicates the best value for each criterion.

Model Method RMSE MPE R2
OOS Rank Rank Rank Rank

VIX OLS 0.0123 0.500 0.335 6 9 7 7.33
VIX WLS 0.0093 0.466 0.368 3 4 1 2.67
J OLS 0.0130 0.457 0.341 10 3 3 5.33
J WLS 0.0068 0.470 0.292 1 5 10 5.33
VIX, J OLS 0.0130 0.452 0.336 9 1 6 5.33
VIX, J WLS 0.0085 0.455 0.366 2 2 2 2.00
VIX, J , no RQ OLS 0.0127 0.502 0.281 8 10 12 10.00
VIX, J , no RQ WLS 0.0104 0.472 0.316 4 6 9 6.33
VIX, r− OLS 0.0131 0.483 0.341 11 7 4 7.33
VIX, r− WLS 0.0118 0.559 0.340 5 12 5 7.33
VIX, J , r− OLS 0.0126 0.503 0.323 7 11 8 8.67
VIX, J , r− WLS 0.0136 0.493 0.291 12 8 11 10.33

where

a = 1− 1

T

T∑
t=1

(
M̃t+1R

I
t+1

)
. (40)

For the benchmark M , CAPM and FF3 models a is negligible, but for Mmon the value of a is

around 0.05.

For some of the robustness checks, the ratio of densities in (13) becomes explosive in the

tails. I therefore impose a maximum on the realized M of 4.53, which corresponds to the highest

realized M of the benchmark method. This is still a large value, compared to the highest realized

pricing kernels in the CAPM and FF3 model of 1.67 and 1.80, respectively.

C.2. Pricing kernel in linear factor models

One can represent the pricing kernel in a linear factor model as (see, e.g.,Cochrane (2005))

Mt = M̄ − bft, (41)

where

b = E(ftf
′
t)
−1λ, (42)
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and λ denotes the market price of risk for each factor. For the CAPM, I use the CRSP value

weighted index and λ is calculated using the sample mean of excess returns. Analogously, for

the Fama-French 3-factor model, I add the size and value factor provided by Kenneth French

on his website.

D. Construction of Equity Portfolios

Following Bali et al. (2016), beta is estimated using a rolling window of one year of daily returns.

Volatility (Vol) and idiosyncratic volatility (Ivol) are calculated over the most recent 21 trading

days as in Ang et al. (2006b). The Max sort is based on the maximum daily return over the

past 21 trading days as in Bali et al. (2011). Momentum (Mom) is the return over the past 12

months, excluding the last month as in Jegadeesh & Titman (1993). Turnover is calculated as

number of shares traded as a fraction of the number of shares outstanding over the past year,

as in Datar et al. (1998). The standardized turnover-adjusted number of zero daily trading

volumes is calculated over the past year, as in Liu (2006). Beta with respect to changes in the

VIX index (β∆VIX) is calculated as in Ang et al. (2006a).

The ten industry portfolios follow the classification provided by Kenneth French on his

website. For the calculation of size, book-to-market (B/M), investment (Inv), and accruals

(Acc), I follow the methodology used by Kenneth French.

The stock returns are obtained from CRSP, the risk-free rate and factors returns are from

Kenneth French’s website. Accounting data are from Compustat. I incorporate delisting returns

based on the CRSP daily delisting file into the last return observation for the calculation of

portfolio returns. Stocks are excluded if they have less then 180 valid return observations

per year, or less than 12 for monthly variables. Lastly, stocks with a price below 1$ (5$ as

robustness), exchange code other than 1, 2, 3 or 31 and share code other than 10 or 11 are

excluded.

The SPX options expire at the market open (“AM”) on the third Friday of each month. To

accommodate this, I calculate “open returns” using the approach suggested by Polk et al. (2019).

In particular, for each stock, I use the closing return on the settlement day and divide this by

the intraday return of that day (open to close). The results remain qualitatively unchanged if

the closing returns either from the expiry date or the preceding day are used. For commodities
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and European stock returns (ESTX options expire at 12:00) only closing prices exist, but the

previous robustness check shows that this is a good approximation.
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