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Abstract

We analyze jointly optimal carbon pricing and financial policies under finan-

cial constraints and endogenous climate-related transition and physical risks. The

socially optimal emissions tax may be above or below a Pigouvian benchmark, de-

pending on whether physical climate risks have a substantial impact on collateral

values. We derive necessary conditions for emissions taxes alone to implement a

constrained-efficient allocation, and show a cap-and-trade system or green subsidies

may dominate emissions taxes because they can be designed to have a less adverse

effect on financial constraints. Additionally introducing leverage regulation can be

welfare-improving if environmental policies have a direct negative effect on financial

constraints. Furthermore, our analysis highlights the positive effect of carbon price

hedging markets on equilibrium environmental policies.
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1 Introduction

Tackling climate change requires large-scale emissions reductions and investments in clean

technologies. Absent other frictions, such investments can be incentivized through emis-

sions taxes set at a rate equal to the social cost of emissions, also known as Pigouvian taxes

in reference to the pioneering work by Pigou (1932). However, during the transition to a

low-carbon economy firms and financial institutions may suffer significant losses due to

stranded assets that become technologically obsolete. At the same time, physical damages

caused by more frequent extreme weather events may hit asset values. Such losses can

aggravate financing frictions, limit the ability of firms to make the necessary investments

in green technologies, and constrain regulators in designing environmental policies (see

Hoffmann et al., 2017; Oehmke and Opp, 2023; Biais and Landier, 2022). Accordingly, the

risks posed by climate change have moved up the agenda of investors and policy makers.1

We make several contributions to this debate by analyzing jointly optimal climate

and financial policies in an analytically tractable model with financial constraints and

endogenous climate-related transition and physical risks. First, our analysis shows that

physical climate risk gives rise to a collateral externality that crucially affects the way

in which carbon taxes interact with financial constraints. Depending on the magnitude

of this collateral externality, the optimal carbon tax may be above or below a standard

Pigouvian benchmark. Second, we derive necessary conditions under which carbon taxes

alone can implement a constrained-efficient allocation, and evaluate the merit of different

climate and financial policies such as cap-and-trade systems, green subsidies, and lever-

age regulation. Third, the model provides novel insights on how carbon price hedging

markets and socially responsible investors may enable or hinder efficient carbon pricing

and emissions reductions in equilibrium.

In the model there are three dates and two types of agents: borrowers and deep-

pocketed, risk-neutral lenders. Borrowers have an initial endowment and access to an

investment project. At the initial date, they finance the project with a mix of inside

equity and debt. Inside equity is costly because borrowers have a quasi-linear utility

function and a limited initial endowment. The borrower’s project generates a pecuniary

return as well as carbon emissions at the final date. The social cost of emissions is not

1For example, the European Central Bank and the Bank of England now include climate risks in their
stress tests (see Alogoskoufis et al., 2021; Brunnermeier and Landau, 2022), and institutional investors
view climate change as an important source of risk that they seek to mitigate (Krueger et al., 2020).
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known ex-ante, reflecting the uncertainty evident in the wide range of estimates of the

social cost of carbon (e.g., see Nordhaus, 2019). At the interim date, all agents learn

whether the economy is in a good state with a low social cost of emissions, or a bad state

with a high cost of emissions. After learning the cost of emissions, borrowers can reduce

emissions through costly abatement activities. At the same time, borrowers need to roll-

over debt raised in the initial period, but new debt issuance is limited by a financial

constraint because the project’s returns are not fully pledgeable to outside investors.

Cash-constrained borrowers can liquidate part of the initial investment at the interim

date to generate resources and at the same time reduce emissions, yet liquidations are

inefficient due to liquidation losses.

Borrowers are exposed to two different types of climate-related risks. First, we con-

sider an environmental regulator imposing state-contingent emissions taxes to incentivize

costly abatement activities, which represent the costs of transitioning to a low-carbon

economy (often referred to as “transition risk” in the literature).2 Second, we assume

that the return of the project may decrease in the level of aggregate emissions to capture

a borrower’s exposure to losses in asset values due to (expected) environmental damages

caused by a warming climate (often termed as “physical risk”).3 Both climate-related

risks are endogenous in the model: transition risk is a consequence of emissions taxes opti-

mally set by an environmental regulator, and financial losses due to physical climate risks

depend on aggregate emissions that are a function of abatement activities and investment

decisions by borrowers. This allows us to explore the differences in how these two types

of climate-related risks interact with financial frictions and affect optimal environmental

and financial policies in equilibrium.

As a benchmark, we show that a state-contingent emissions tax equal to the social

cost of emissions (i.e., a Pigouvian tax) implements the first-best allocation if financial

constraints are slack in all states. In the first-best allocation, there are no liquidations

and the optimal abatement scale trades off the social benefit of lower emissions against

2Consistent with transition risks being priced in financial markets, recent evidence documents that
firm-level carbon emissions are priced in corporate bonds (see Seltzer et al., 2020), stocks (see Bolton and
Kacperczyk, 2021), and options (see Ilhan et al., 2021), and that the risk of stranded fossil fuel assets is
priced in bank loans (see Delis et al., 2019).

3Several studies document the relevance of physical risk for asset prices and firm financing. For
example, Giglio et al. (2021) find that the value of real estate in flood zones responds more to changes
in climate attention, and Issler et al. (2020) document an increase in delinquencies and foreclosures after
wildfires in California. Evidence in Ginglinger and Moreau (2019) indicates that physical climate risks
affect a firm’s capital structure. For a review discussing climate risks, see Giglio et al. (2021).
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abatement costs. However, in equilibrium the financial constraint may bind (particularly

in the bad state where a high social cost of emissions necessitates high emissions taxes and

abatement investments). In this case, Pigouvian taxes cannot implement the first best,

and optimal emissions taxes generally differ from the Pigouvian benchmark. The reason

is that a constrained borrower has a limited ability to finance abatement and therefore

needs to inefficiently liquidate some of the project at the interim date. Consequently, the

socially optimal emissions tax needs to trade off the benefit of lower emissions against

the cost of triggering inefficient liquidations. This implies an optimal emissions tax below

the Pigouvian benchmark because borrowers are “too levered for Pigou”.4

A key insight from our analysis is that physical climate risks can reverse the rela-

tionship between emissions taxes and financial constraints. If physical climate risk has a

substantial effect on collateral values, borrowers may benefit from an increase in pledge-

able income when the aggregate level of emissions is brought down by a higher emissions

tax.5 Because of this collateral externality the optimal emissions tax may be above the

Pigouvian benchmark rate if the effects of physical climate risk dominate the effects of

transition risk. More broadly, we show that financial constraints call for a generalized

Pigouvian tax that takes climate-induced collateral externalities into account.

To evaluate whether it may be welfare-improving to use other policy tools, we an-

alyze under what conditions the allocation implemented with emissions taxes alone is

constrained efficient (i.e., equivalent to an allocation chosen by a planner maximizing

social welfare subject to the same constraints as private agents). In a first step, we con-

sider a benchmark where emissions taxes are fully rebated to borrowers, and tax rebates

are fully pledgeable to outside investors, so that emissions taxes have no direct effect on

financial constraints. In this case, the competitive equilibrium with optimally set emis-

sions taxes is constrained efficient. This implies that, while financial constraints generally

imply optimal emissions taxes different from a Pigouvian benchmark, there is no scope to

improve welfare using additional policy instruments when tax rebates are fully pledgeable.

By contrast, when tax rebates are partially non-pledgeable, the allocation is not con-

strained efficient, and using other policy tools can improve welfare. In a frictionless world,

4The mechanism behind this result is consistent with recent evidence documenting that financial con-
straints affect firm abatement activities and emissions, see Xu and Kim (2022) and Bartram et al. (2021).

5This effect is similar to collateral externalities in models with pecuniary externalities (for a detailed
discussion, see Dávila and Korinek, 2018). In our setting, the collateral externality operates through a
reduction in asset values due to (expected) environmental damages.
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emissions taxes are equivalent to a cap-and-trade system with tradable pollution permits

(such as the EU Emissions Trading System, EU ETS), and the initial allocation of pol-

lution permits does not matter for equilibrium emissions (see Montgomery, 1972). We

show that in the presence of financial constraints this “Coasean independence” breaks

down because the initial allocation of permits affects the tightness of constraints. Conse-

quently, the equivalence between emissions taxes and a cap-and-trade system only holds

if the pledgeability of tax rebates is equal to the fraction of freely allocated permits.

This implies that freely allocating all pollution permits can eliminate the direct effect of

carbon pricing on financial constraints and implement a constrained-efficient allocation.

This is an important policy insight given real-world cap-and-trade systems (including the

EU ETS) typically do not allocate 100% of permits for free.

Perhaps trivially, the most effective policy tools create financial slack by transfer-

ring resources from unconstrained investors to constrained borrowers. Sufficiently large

transfers can enable the first-best allocation and can be implemented through “green

subsidies” financed with taxes paid by unconstrained agents. If such subsidies cannot be

designed to provide emissions reductions incentives, they still need to be combined with

emissions taxes. This may rationalize the combined use of carrots (green subsidies) and

sticks (carbon taxes) observed in practice.

Given the central role of financial constraints, we also consider financial regulation

that allows the regulator to fix the initial level of borrowers’ equity at a given level.

Such a policy can be implemented through direct leverage mandates or, alternatively,

through taxes and subsidies on initial leverage. Importantly, the presence of financial

constraints alone does not motivate financial regulation in the model. This implies any

rationale for leverage regulation is driven by the environmental externality, which allows

us to contribute to the debate on whether financial regulatory frameworks should consider

climate-related risks beyond the prudential motive behind current regulatory frameworks

(such as moral hazard problems due to government guarantees or pecuniary externalities,

see, for example, Dewatripont and Tirole, 1994; Hellmann et al., 2000; Lorenzoni, 2008;

Martinez-Miera and Repullo, 2010; Bahaj and Malherbe, 2020).

To understand the role of leverage regulation in the model, note that, (i) a borrower’s

initial leverage affects emissions because it affects financial constraints and therefore liq-

uidations and abatement activities; and (ii) when emissions pricing cannot implement a
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constrained-efficient allocation, there remains a wedge between the social and the private

cost of emissions even when emissions taxes are set optimally. Together, these two points

imply that borrowers make socially inefficient leverage choices, and consequently there is

a role for leverage regulation to improve welfare – but only if the environmental policy

cannot implement the constrained-efficient allocation. This suggests a “regulatory peck-

ing order”. First, combine carbon pricing with redistributive green subsidies that transfer

resources from unconstrained to constrained agents. If such transfers are unfeasible, use

policy tools that have no direct effect on financial constraints, such as a cap-and-trade

system with freely allocated permits. Only if such policies cannot be implemented opti-

mally, there is a case to complement carbon pricing with leverage regulation.

We also show that carbon price hedging markets can have a positive effect on equi-

librium environmental policy, beyond their first-order risk sharing benefits for borrowers.

We consider hedging contracts contingent on carbon taxes, which can be implemented

through carbon price derivatives or climate-linked bonds that write off part of the prin-

cipal when carbon taxes are high. Such instruments shift resources from the good to the

bad state. If this results in slack constraints in both states, it may enable the regulator

to implement the first-best allocation using standard Pigouvian taxes. This highlights an

important role the financial sector can play in the transition to a low-carbon economy,

distinct from socially responsible investing that aims to reduce emissions by taking envi-

ronmental and social factors into account in investment decisions (e.g., see Pástor et al.,

2021; Oehmke and Opp, 2023; Goldstein et al., 2022; Gupta et al., 2022). In another ex-

tension, we consider such socially responsible investors in the model. While they can pro-

vide incentives to reduce emissions by demanding a higher financing cost if borrowers fail

to reduce emissions, our analysis also highlights they can have a perverse negative effect

on abatement by tightening borrowers’ financial constraints. This implies that socially

responsible investors are an imperfect substitute for a well-designed carbon pricing policy.

This paper relates to several recent contributions that study environmental externali-

ties and green investment under financial and other economic frictions (Tirole, 2010; Biais

and Landier, 2022). Recent contributions by Hoffmann et al. (2017) and Oehmke and

Opp (2023) also find that, in the presence of financial constraints, Pigouvian taxes can-

not implement a first-best allocation, and optimal emissions taxes generally differ from a

standard Pigouvian solution. Relative to these papers, our contribution is that we analyze
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the economic efficiency under a range of different policy tools including jointly optimal

carbon pricing and leverage regulation.6 Moreover, our model features endogenous cli-

mate transition and physical risks, which allows us to derive novel insights on how these

two climate-related risks differ in their impact on environmental and financial policies.

Another related contribution by Oehmke and Opp (2022) analyzes capital require-

ments as a tool to incentivize bank lending to green firms when emissions taxes are not

available. Dávila andWalther (2022) more generally study optimal regulation when policy

instruments are imperfect, with an application to risk-weighted capital requirements that

take environmental externalities into account. We complement these results by comparing

the efficiency under different environmental policy tools, and ask under what conditions

it may be beneficial to combine environmental policy with leverage regulation in a setting

in which there is no motive for financial regulation absent environmental externalities.

Our work also relates to the literature using DSGE models with financial frictions

to simulate the effect and optimal design of macroprudential and monetary policies in

the presence of environmental externalities (Carattini et al., 2021; Dafermos et al., 2018;

Diluiso et al., 2020; Ferrari and Landi, 2021). We contribute by providing analytical

results that allow us to compare different policy tools, pinpoint the friction motivating

financial regulation, and study the impact of financing instruments on equilibrium policy.

Section 2 describes the model setup. Section 3 solves the competitive equilibrium.

Section 4 analyzes optimal emissions taxation, and compares emissions taxes to a cap-and-

trade system and green subsidies. Section 5 introduces financial regulation, and Section 6

considers carbon price hedging and socially responsible investors. Section 7 concludes.

2 Model Setup

There are three dates, t = 0, 1, 2, a unit mass of investors, and a unit mass of borrowers.

At t = 1 all agents learn whether the economy is in a good state (s = G) with a low

social cost of emissions, or in a bad state (s = B) with a high social cost of emissions.

The state of the world is drawn from a binomial distribution with the probability of the

bad state given by qB and that of good state equal to qG = 1− qB.

6Hoffmann et al. (2017) also consider credit subsidies that support abatement investment. These
policy instruments are different from the ex-ante leverage regulation we consider but are similar to the
green subsidy explored in Section 4.4, as both transfer resources to constrained agents.
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Preferences and Endowments. Investors are risk-neutral and deep-pocketed in that

they have a large endowment Ait at t = 0 and t = 1. Borrowers have a limited endowment

A0 only at t = 0 and quasi-linear utility over consumption. There is no discounting and

all agents suffer disutility from aggregate carbon emissions Ea
s at t = 2:

U i = ci0 + ci1s + ci2s − γusE
a
s ,

U b = u(cb0) + cb1s + cb2s − γusE
a
s ,

where γus is a parameter governing the cost of emissions in agent’s utility, which depends

on the state of the world s ∈ {G,B}. In the bad state γus takes a high value γuB > γuG. In

the good state, we normalize γuG = 0.

The quasi-linear utility function introduces a meaningful trade-off for borrowers in

how much own funds they contribute to the project. To ensure an interior solution

we assume that u(c0) satisfies the Inada conditions, i.e., u(c0) is strictly increasing and

strictly concave, and in the limit u′(0) = ∞ and u′(∞) = 0. Agents are atomistic, so that

they do not internalize the effect of their decisions on aggregate carbon emissions Ea
s .

Technology. At t = 0 borrowers can invest in a productive technology with a fixed scale

at an investment cost I0. At t = 1 borrowers can liquidate some of the initial investment

and adjust the investment scale to I1s ≤ I0. The project generates a return of R(I1s, E
a
s ) =

ρI1s − γpsE
a
s at t = 2, and liquidations generate a payoff µ(I0 − I1s) at t = 1, with µ < 1.

The parameter γps captures the negative effect of physical climate risk on firms’ asset

values. As with the utility cost of emissions, γpB ≥ 0 and γpG = 0. Note that a positive γps

does not require extreme weather events to directly hit firm assets in the near future, but

merely that expected environmental damages affect asset values (for a review of evidence

on such asset pricing effects, see Giglio et al., 2021). Using a separate parameters γps

allows us to perform key comparative statics on the intensity of climate-related collat-

eral damages compared to other climate-related losses captured by γus . The total social

cost of emissions consists of a direct utility cost as well as losses in asset values from

environmental damages, γs = 2γus + γps .

The social cost of emissions is uncertain from an ex-ante perspective, consistent with

the wide range of estimates of the social cost of carbon (see Nordhaus, 2019). While

uncertainty is not a necessary model ingredient for our baseline results, it allows us to
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study the role that financial markets can play in facilitating more efficient environmental

policy (see Section 6). Moreover, it allows us to frame the analysis in the context of

long-run investments and uncertain climate policies and outcomes.

The project emits carbon emissions E(Xs, I1s) at t = 2, which aggregate to Ea
s and

may be subject to emissions taxes τs. Emissions can be reduced by non-verifiable abate-

ment investments, denoted by Xs, at a cost C(Xs, I1s) paid at t = 1. We offer two

possible interpretations of this setup. Borrowers may represent non-financial firms that

directly invest in a polluting asset, such as manufacturing firms investing in polluting

plants. Alternatively, we show in the Internet Appendix (Section IA.3) that, under cer-

tain conditions, the setup is equivalent to one in which borrowers are financial institutions

that lend to firms with polluting assets. In the latter case, borrowers pay for emissions

taxes and abatement costs indirectly through the profitability of their loan portfolios.

We make the following functional form assumptions.

Assumption 1. E(X, I1) and C(X, I1) satisfy

1. ∂E(X,I1)
∂X

≤ 0, ∂E(X,I1)
∂I1

≥ 0, ∂C(X,I1)
∂X

≥ 0, ∂C(X,I1)
∂I1

≥ 0,

2. E(X → ∞, I0) = E(X, 0) = 0, E(0, I0) = Ē, C(0, I1) = C(X, 0) = 0,

3. ∂2E(X,I1)
∂X2 = 0, ∂2C(X,I1)

∂X2 > 0.

Assumption 1.1 ensures that abatement investments are costly but reduce emissions,

and that a higher final investment scale is associated with higher emissions and abatement

costs. Assumption 1.2 defines boundaries such that costs and emissions are non-negative,

and there is an upper bound Ē on emissions. Assumption 1.3 implies that emissions are

linear in abatement, which simplifies the exposition, and that the cost of abatement is

strictly convex, so that the borrower’s optimal abatement choice has an interior solution.

Environmental Regulation. After production takes place, an environmental regu-

lator can observe emissions and impose a state-contingent emissions tax τs per unit of

emissions.7 Emissions taxes are rebated lump-sum to borrowers, Ts = τsE
a
s . Sections 4.3

7We only consider a linear tax because there is no heterogeneity among borrowers, and therefore a non-
linear tax cannot improve upon a linear tax. See Hoffmann et al. (2017) for a model with heterogeneity,
in which a non-linear tax can be a superior policy instrument because it transfers less resources from
more to less constrained firms.

9



and 4.4 consider alternative environmental policies in the form of a cap-and-trade sys-

tem and green subsidies. In Section 5 we also study whether there is scope for leverage

regulation to complement environmental policy.

Financing. Borrowers need to finance the upfront investment I0 at t = 0 and abatement

Xs at t = 1. At t = 0, they can contribute their own funds as inside equity financing e ≤

A0. Additionally, borrowers can raise debt financing d0 and d1s from investors at t = 0, 1.

In Section 6, we also allow borrowers to write hedging contracts (which could be imple-

mented through state-contingent “climate-linked” bonds), and explore the effect of intro-

ducing socially responsible investors.8 These extensions provide interesting additional in-

sights on how different financial instruments can affect equilibrium environmental policy.

External financing is limited by a moral hazard problem. We assume that borrowers

can abscond with any resources except a fraction θ ∈ [0, 1] of asset returns, and a fraction

ψ ∈ [0, 1] of tax rebates at t = 2. Thus, there is a wedge between the project’s return and

pledgeable income, with pledgeable project returns given by R̃(I1s, E
a
s ) = θR(I1s, E

a
s ) (as

in Rampini and Viswanathan, 2013, among others). The separate pledgeability parameter

for tax rebates allows us to perform key comparative statics exercises. For example, when

ψ = 1 tax rebates are fully pledgeable and emissions taxes have no direct effect on financial

constraints, while the opposite holds when ψ < 1.

At the interim date the liquidation proceeds µ(I0−I1s) can be seized by investors who

provided t = 0 financing (that is, liquidation proceeds are pledgeable). Investors can de-

mand liquidation if they choose not to roll over their debt and are not fully repaid at t = 1.

Variable Definitions. For the further analysis it will be useful to introduce the fol-

lowing variable definitions and assumptions:

Definition 1. The project’s private net marginal return r(τ,X, I1) and pledgeable net

marginal return r̃(τ,X, I1) are respectively defined as

r(τ,X, I1) = ρ− µ− ∂C(X, I1)

∂I1
− τ

∂E(X, I1)

∂I1
,

r̃(τ,X, I1) = θρ− µ− ∂C(X, I1)

∂I1
− τ

∂E(X, I1)

∂I1
.

8Additionally, Internet Appendix Sections IA.1.2 and IA.1.3 discuss the solution when borrowers use
external equity or long-term debt financing.
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Assumption 2. Project returns ρ are sufficiently large and pledgeability θ sufficiently

small such that, given a threshold τ̄ ≥ γB,

1. r(τ,X, I1) > 0, ∀X, I1, τ ≤ τ̄ ,

2. r̃(0, X, I1) < 0, ∀X, I1.

The first condition ensures that continuing the project has a positive NPV even in

the bad state with a high social cost of carbon, as long as emissions taxes do not exceed

some threshold τ̄ . Throughout the paper we focus on the interesting case τB ≤ τ̄ . The

second condition ensures that, while inefficient, liquidations relax financial constraints.

2.1 First-Best Benchmark

Proposition 1. In the first-best allocation I1s = I0, and optimal t = 0 consumption by

borrowers, cb0, and optimal abatement, Xs, are defined by the following conditions:

u′(cb0) = 1,

γs
∂E(X, I1s)

∂Xs

= −∂C(Xs, I1s)

∂Xs

.

Proof. See Appendix A.1

In the first-best allocation, the optimal abatement equates the marginal gain from

lower emissions to the marginal cost of abatement. The borrower’s consumption is at

a level that ensures the marginal utility is equalized across agents and time. Crucially,

there are no liquidations because liquidations are inefficient by Assumption 2. The next

section shows that this may be different in the competitive equilibrium, where financially

constrained borrowers may need to liquidate some of their initial investment.

3 Competitive Equilibrium

This section solves the problem of borrowers and defines a competitive equilibrium given a

state-contingent emissions tax τs. We analyze optimal emissions taxes and compare the al-

location to an equilibrium with financial regulation and other policy tools in later sections.
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3.1 Borrower Problem

The borrower’s expected utility is given by

E[U b] = u(cb0) +
∑

k∈{G,B}

qk
(
cb1k + cb2k − γukE

a
k

)
.

Borrowers maximize their expected utility subject to the following constraints:

cb0 = A0 − e ≥ 0, (1)

cb1s = (I0 − I1s)µ+ d1s − (I0 − e)− C(Xs, I1s) ≥ 0, (2)

cb2s = R(I1s, E
a
s )− τsE(Xs, I1s)− d1s + Ts ≥ 0, (3)

d1s ≤ R̃(I1s, E
a
s )− τsE(Xs, I1s) + ψTs, (4)

I1s ∈ [0, I0]. (5)

Equations (1), (2) and (3) are non-negativity constraints on consumption at t = 0, 1, and

2, respectively. Eq. (4) is a financial constraint that ensures t = 1 borrowing does not ex-

ceed pledgeable income, which implies borrowers have no incentive to abscond at t = 2.9

Throughout the paper, we focus on the case in which optimally d0 < µI0 (which holds as

long as u′(A0 − (1− µ)I0) is not too high), because otherwise borrowers would prefer to

forgo the project and consume all of their initial endowment. This also implies that bor-

rowers have no incentive to default on t = 0 debt at t = 1, as we show in Appendix A.2.2.

Additionally, we explore regulatory constraints on t = 0 debt in Section 5.

Using the budget constraints to eliminate cb0, c
b
1s, c

b
2s, d0, and d1s, the borrower’s prob-

lem can be formulated as a Lagrange function of e,Xs, I1s with Lagrange multipliers λs for

the t = 1 financial constraint in state s, and κ’s serving as multipliers for lower and upper

bounds on variables. The Lagrangian is formally stated in Eq. (18) in Appendix A.2.1.

9Eq. (4) is equivalent to an incentive-compatibility condition cb2s ≥ (1− θ)R(I1s, E
a
s ) + (1− ψ)Ts.
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3.2 Borrower Decisions at t = 1

At t = 1 borrowers observe the realization of the aggregate state s and the corresponding

tax τs, and then choose Xs and I1s according to the following conditions.

(1 + λs)

(
τs
∂E(Xs, I1s)

∂Xs

+
∂C(Xs, I1s)

∂Xs

)
= 0, (6)

r(τs, Xs, I1s) + λsr̃(τs, Xs, I1s)− κIs + κIs = 0, (7)

λs[R̃(I1s, E
a
s )− τsE(Xs, I1s) + ψTs + e− I0 + µ(I0 − I1s)− C(Xs, I1s)] = 0. (8)

The first order condition with respect to Xs in Eq. (6) shows that borrowers choose

abatement trading off a reduction in the emissions tax bill against the cost of abatement.

Eq. (7) is the first order condition with respect to I1s, and it reflects the trade-off between

increasing the private net return and relaxing the financial constraints, captured by r(·)

and λsr̃(·) respectively. Together with Eq. (8), which combines the complementary slack-

ness conditions of the financial constraint (4) and non-negativity constraint of cb1s (2),

these conditions define the optimal state-contingent t = 1 allocations I1s, Xs, and λs for

a given τs and e (the optimality condition for equity is derived below).

Lemma 1. Borrowers do not liquidate any investment if the financial constraint (4) is

slack. That is, if λs = 0, then I1s = I0. In contrast, if λs > 0, then borrowers liquidate

some investment so that I1s < I0.

Proof. In Appendix A.2.3

Lemma 1 follows from Assumption 2, which implies that the net marginal return

is positive and therefore it is optimal to continue the project without any liquidations,

i.e., the optimum is a corner solution with I1s = I0 and κIs > 0. By contrast, if the

financial constraint is binding, λs > 0, the pledgeable income under the full investment

scale is insufficient to support the required borrowing. Since liquidations relax financial

constraints (by Assumption 2.2), in this case borrowers reduce the investment scale at

t = 1 by choosing I1s < I0.

3.3 Borrower Decisions at t = 0

At t = 0 borrowers decide on their capital structure by choosing the optimal inside equity

e (debt financing follows as the residual d0 = I0 − e). The first order condition of the
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borrower’s problem w.r.t. e is given by

u′(A0 − e) =1 + qGλG + qBλB. (9)

Condition (9) shows that borrowers contribute equity trading off the marginal utility cost

of lower t = 0 consumption on the left-hand side against the marginal utility of t = 1

consumption plus the expected shadow cost of the financial constraint on the right-hand

side. The first order conditions and complementary slackness condition together define

the competitive equilibrium:

Definition 2. Given a state-contingent emissions tax τs, the competitive equilibrium

is the set of allocations I∗1s(τs), X
∗
s (τs), λ

∗
s(τs), e

∗(τG, τB), defined by Equations (6), (7),

(8), and (9). Aggregate emissions are given by Ea
s (τs) = E(X∗

s , I
∗
1s). The allocations

cb∗0 (τG, τB), c
b∗
1s(τs), c

b∗
2s(τs), and d

∗
0(τG, τB) follow as residuals from Eqs. (1), (2), (3), and

d0 = I0 − e.

For brevity we sometimes omit the dependence of equilibrium allocations on τs. For

instance, we refer to X∗
s (τs) as X

∗
s , or to e

∗(τG, τB) as e
∗.

3.4 Pigouvian Benchmark

Proposition 2. If λ∗s(γs) = 0, ∀s ∈ {G,B}, then the competitive equilibrium with τs = γs

is equivalent to the first-best allocation.

Proof. With λ∗s(γs) = 0, ∀s ∈ {G,B}, it follows from Lemma 1 that I∗1s = I0. This

investment level, as well as the FOCs of borrowers w.r.t. Xs and e in Eqs. (6) and (9),

are then equivalent to those in the first best given in Proposition 1.

Proposition 2 establishes an important benchmark result. If the financial constraint is

slack in all states, then by Lemma 1 borrowers can avoid inefficient liquidations, and the

optimal Pigouvian emissions tax can implement the first-best allocation. Accordingly,

throughout we refer to a tax τs = γs ∀s ∈ {B,G} as the Pigouvian benchmark. In the

next section we depart from this benchmark and analyze optimal emissions taxes when

the financial constraint binds.
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4 Optimal Carbon Pricing

To analyze optimal emissions taxes in the presence of financial constraints, we consider

the problem of an environmental regulator who sets a state-contingent emissions tax τ ∗s

after observing the social cost of emissions at t = 1. We then show under what conditions

the resulting equilibrium allocation is constrained efficient, and ask whether there is a

case to combine emissions taxes with other policy instruments.

4.1 Socially Optimal Emissions Tax

To derive the optimal τs, we solve the problem of a regulator choosing the optimal tax at

t = 1 so as to maximize social welfare. This problem is formally stated in Appendix A.3.2.

The regulator’s first order condition with respect to τs can be written as:

(τs − γs)
∂E(X∗

s , I
∗
1s)

∂X∗
s

∂X∗
s

∂τs
+ r(γs, X

∗
s , I

∗
1s)
∂I∗1s
∂τs

= 0. (10)

The regulator trades off the effect of the tax on welfare through its impact on emissions,

reflected in the first term in Eq. (10), against the welfare implications of the change in the

final investment scale induced by the tax, captured in the second term of the equation.

In this condition, the final investment scale I∗1s and abatement X∗
s are optimal choices by

private agents that respond to changes in emissions taxes.

4.1.1 The Effect of Taxes on Equilibrium Allocations

Higher emissions taxes increase the cost of polluting, which incentivizes borrowers to

invest more in abatement. But higher emissions taxes also affect the tightness of financial

constraints, which may induce borrowers to abate less. Through this indirect effect,

emissions taxes can have a perverse effect and decrease abatement due to tightening

financial constraints. To focus on the interesting case in which emissions taxes are a

useful tool to incentivize abatement to begin with, we introduce parameter assumptions

that ensure the direct effect of emissions taxes on abatement dominates.

Assumption 3. Model parameters are such that ∂X∗
s

∂τs
> 0 ∀τs, as characterized in Ap-

pendix A.3.1.

The following Lemma additionally clarifies how liquidations and therefore the equi-
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librium investment scale I∗1s responds to emissions taxes.

Lemma 2. If the financial constraint is slack, λ∗s(τs) = 0, then
∂I∗1s
∂τs

= 0 and ∂X∗
s

∂τs
> 0.

Under Assumption 3, if λ∗s(τs) > 0, then ∂X∗
s

∂τs
> 0 and there exists a threshold character-

ized by γ̂ps (τs) =
ψ
θ
τs +

(1−ψ)
θ
E(X∗

s , I
∗
1s)

∂2C(X∗
s ,I

∗
1s)

∂(X∗
s )

2 /
(
∂E(X∗

s ,I
∗
1s)

∂X∗
s

)2
, such that

• ∂I∗1s
∂τs

< 0 if γps < γ̂p(τs),

• ∂I∗1s
∂τs

= 0 if γps = γ̂p(τs),

• ∂I∗1s
∂τs

> 0 if γps > γ̂p(τs).

Proof. See Appendix A.3.1

Only if the financial constraint binds, λ∗s(τs) > 0, borrowers need to liquidate invest-

ments to be able to roll-over their debt. Interestingly, higher emissions taxes can result

in more or less liquidations, depending on how strongly asset values are affected by phys-

ical climate risk, as captured by γps . The overall effect of emissions taxes on the final

investment scale follows from totally differentiating (8) with respect to τs:

∂I∗1s
∂τs

=

Direct effect︷ ︸︸ ︷
(1− ψ)E(X∗

s , I
∗
1s)+

Collateral externality︷ ︸︸ ︷
(θγps − ψτs)

∂Ea
s

∂X∗
s

∂X∗
s

∂τ

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s)

(11)

This equation highlights that emissions taxes affect the final investment scale via two

channels that operate through financial constraints. First, changes in the tax directly

affect the size of the tax bill and the tax rebate. Since only a fraction ψ of the tax

rebate is pledgeable this direct effect of the emissions tax on the tightness of the financial

constraint is proportional to (1− ψ)E(X∗
s , I

∗
1s).

Second, changes in abatement also affect the aggregate level of emissions, which im-

pact borrowers’ pledgeable income via two collateral externalities. Physical climate risk

represents a negative collateral externality because higher aggregate emissions result in

larger physical damages to borrowers’ assets, decreasing pledgeable income by θγps . As a

result, higher emissions taxes partly relax financial constraints. At the same time, there is

a positive collateral externality because tax rebates are a function of aggregate emissions.

Lower aggregate emissions reduce the tax rebate, decreasing pledgeable income by ψτs.

Overall, the effect of emissions taxes on financial constraints and liquidations depends

on the relative strength of the direct effect of taxes on pledgeable income, and the indirect
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effects due to collateral externalities.10 When borrowers’ exposure to physical climate risk

is low such that γps < γ̂p, the direct effect and tax rebate externality dominate, so that

higher emissions taxes imply tighter constraints and more liquidations. If borrowers’

exposure to physical climate risk is high such that γps > γ̂p, the equilibrium effect of

emissions taxes that lowers the physical risk dominates, so that higher emissions taxes

relax financial constraints and result in fewer liquidations.

4.1.2 Optimal Emissions Tax

Because emissions taxes interact with financial constraints, the regulator considers not

only the direct effect of taxes on emissions, but also their side effect on asset liquidations.

Proposition 3. The optimal emissions tax τ ∗s solves (10). If λ∗s(γs) = 0 or γs = 0,

then τ ∗s = γs. If λ∗s(γs) > 0 and γs > 0, then the optimal tax depends on the strength of

physical risk γps , and on the pledgeability of tax rebates ψ and cash flows θ. If ψ ≥ θ, the

optimal emissions tax is below the direct social cost of emissions: τ ∗s < γs. If ψ < θ, then

• τ ∗s < γs if γ
p
s < γ̂p(τ ∗s ),

• τ ∗s = γs if γ
p
s = γ̂p(τ ∗s ),

• τ ∗s > γs if γ
p
s > γ̂p(τ ∗s ),

Proof. See Appendix A.3.2

With binding financial constraints, λ∗s(γs) > 0, the optimal emissions tax generally

differs from the Pigouvian benchmark equal to the direct social cost of emissions γs,

because the regulator needs to account for the effect of the policy on liquidations. To

disentangle the results in Proposition 3, we discuss three polar cases: (i) tax rebates are

not pledgeable and physical climate risk has no effect on collateral values (ψ = γps = 0);

(ii) tax rebates are not pledgeable but physical climate risk has an effect on collateral

values (ψ = 0, γps > 0); and (iii) tax rebates are pledgeable and physical climate risk has

an effect on collateral values (ψ > 0, γps > 0).

10Note that, because higher taxes induce an endogenous change in abatement by borrowers, they also
affect abatement costs. On one hand, higher abatement increases abatement costs, tightening financial
constraints. On the other hand, higher abatement reduces emissions and thereby the tax bill, easing
financial constraints. Therefore, an additional term that shows up in the numerator of Eq. (11) is

−
(

∂C(X∗
s ,I

∗
1s)

∂X∗
s

+ τ
∂E(X∗

s ,I
∗
1s)

∂X∗
s

)
∂X∗

s

∂τ . However, by the borrower’s optimal abatement choice in Eq. (6), this

term is equal to zero, so that this channel has no marginal effect on financial constraints and drops out
from Eq. (11).
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(i) No physical risk (ψ = γps = 0). With non-pledgeable tax rebates and absent

physical climate risk effects, there is no collateral externality and emissions taxes affect

financial constraints only through their direct effect on pledgeable income. In this case,

higher taxes trigger inefficient liquidations (see Lemma 2). Internalizing this undesired

side effect, an environmental regulator sets an emissions tax below the direct social cost

of emissions, τ ∗s < γs. Intuitively, regulators set a lower carbon tax because they under-

stand that higher taxes constitute a realization of climate transition risk for financially

constrained borrowers. Put differently, optimal emissions taxes are below the Pigouvian

benchmark because borrowers are “too levered for Pigou”.

(ii) Physical risk (ψ = 0, γps > 0). Physical climate risk implies that emissions taxes

affect borrower’s financial constraints not only through their direct effect, but also through

a collateral externality. The relative importance of this effect depends on how strongly

collateral values are exposed to physical climate risk, as measured by γps . If γ
p
s < γ̂ps , the

direct effect dominates and the trade-off resembles the one in case (i) above. This case

applies when climate transition risks dominate physical climate risk effects, for example

in economies with large polluting industries. By contrast, if the effect of physical climate

risk on collateral values is sufficiently high such that γps > γ̂ps , then higher emissions

taxes ease financial constraints (see Lemma 2). As a result, the trade-offs faced by an

environmental regulator change fundamentally, implying optimal emissions taxes above

the direct social cost of emissions, τ ∗s > γs.
11 Such a case may apply to economies that

are heavily exposed to the risk of weather disasters such as droughts or floodings.

(iii) Plegeability (ψ > 0, γps > 0). With (partially) pledgeable tax rebates, the over-

all collateral externality effect of emissions taxes depends not only on the impact due

to physical climate risk, but also due to changes in the size of tax rebates. The latter

represents a positive collateral externality of emissions, thereby counteracting the nega-

tive collateral externality due to physical risk. Which of the two collateral externalities

dominates depends on whether tax rebates or asset returns have a greater pledgeability.

If ψ ≥ θ, tax rebates are more pledgeable than the firm’s asset returns, and the positive

collateral externality due to tax rebates dominates. In this case, optimal emissions taxes

11Heider and Inderst (2022) highlight another reason why the optimal emissions tax may be above a
Pigouvian benchmark, namely if it improves margins earned by green producers in the product market.
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are unambiguously below the direct social cost of emissions, τ ∗s < γs, irrespectively of

the level of γps . By contrast, if ψ < θ the optimal emissions tax may be above the direct

social cost of emissions if γps is sufficiently large, as discussed under case (ii) above.

An interesting implication is that, in economies where firms’ assets have a low pledge-

ability (such as knowledge-based economies with much intangible capital), optimal emis-

sions taxes are lower because the effect of physical risk on collateral values is less relevant

(small θ). Similarly, emissions taxes may be optimally lower in economies where tax

rebates are more pledgeable (large ψ; for example, due to stronger institutions).

Generalized Pigouvian Tax under collateral externalities. Previous literature

on collateral externalities focuses primarily on pecuniary externalities, whereby borrow-

ers do not internalize how their choices affect the financial constraint of other agents

through their impact on prices (for a detailed discussion, see Dávila and Korinek, 2018).

By contrast, in our setting collateral extenalities can emerge because atomistic agents

do not internalize their impact on aggregate emissions, which in turn affect the value of

pledgeable assets through the (expected) physical damages and a change in the magni-

tude of transfers. Consequently, the total social cost of emissions includes not only the

direct social cost of emissions γs, but also the indirect costs due to collateral externalities

driven by physical climate risk, λsθγ
p
s , and the pledgeability of tax rebates, λsψτs. There-

fore, another useful benchmark to compare the optimal emissions tax to is a generalized

Pigouvian tax, defined as the emissions tax that equalizes the private cost of emissions

τs to the total social cost of emissions γs + λsθγ
p
s + λsψτs.

Proposition 4. Let the generalized Pigouvian tax be defined as

τGPs =
γs + λ∗sθγ

p
s

1 + ψλ∗s
.

With λ∗s > 0 and γs > 0, the optimal emissions tax is τ ∗s = τGPs if ψ = 1, and τ ∗s < τGPs

if ψ < 1. With λ∗s = 0 or γs = 0, the optimal emissions tax is τ ∗s = τGPs = γs.

Proof. In Appendix A.3.3

While the optimal emissions tax may be above a standard Pigouvian benchmark equal

to the direct social cost of emissions γs (see Proposition 3), Proposition 4 shows that, if tax

rebates are not fully pledgeable, the optimal emissions tax is always below a generalized

19



Pigouvian benchmark that accounts for collateral externalities. This highlights that, even

with τ ∗s > γs, the adverse direct effect of emissions taxes on financial constraints can limit

the regulator in setting a tax that accounts for all direct and indirect social costs of emis-

sions. The next subsection shows this has implications for the efficiency of the allocation.

4.2 Efficiency

To evaluate efficiency, we compare the allocation that can be implemented with the

optimal emissions tax τ ∗s to the constrained-efficient allocation in which a social planner

can choose Xs, I1s and e directly, subject to the same resource and financial constraints as

private agents. This constrained-efficient allocation is formally defined and characterized

in Appendix A.4.1.

Proposition 5. If ψ = 1, then the competitive equilibrium with a socially optimal emis-

sions tax equal to the generalized Pigouvian tax τGPs = γs+λ∗sθγ
p
s

1+λ∗s
is constrained efficient.

If ψ < 1 and the financial constraint binds in some state, λ∗s > 0, then the competitive

equilibrium with a socially optimal emissions tax τ ∗s is not constrained efficient.

Proof. In Appendix A.4.1

We show in Appendix A.4.1 that the constrained-efficient level of abatement solves

−(γs + λsθγ
p
s )
∂E(Xs, I1s)

∂Xs

= (1 + λs)
∂C(Xs, I1s)

∂Xs

. (12)

When choosing the optimal level of abatement, a constrained social planner trades off the

benefits associated with lower aggregate emissions on the left-hand side against the cost

of abatement on the right-hand side of Eq. (12). The total marginal benefit of lowering

emissions consists of the avoided direct social cost γs, plus the indirect social cost due to

the collateral externality associated with physical climate risk λsθγ
p
s . On the right-hand

side, the marginal abatement cost is scaled by the marginal utility of consumption plus

the shadow cost of the financial constraint, (1 + λs), because spending on abatement

tightens borrowers’ financial constraints.

In contrast to a social planner, the environmental regulator cannot choose abatement

directly, but instead uses emissions taxes as a policy instrument to incentivize abatement.

If tax rebates are fully pledgeable, the regulator can implement the abatement level de-
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fined by Eq. (12) without introducing additional distortions to the final investment scale

by setting the emissions tax equal to the generalized Pigouvian tax τGPs . However, if tax

rebates are not fully pledgeable, ψ < 1, taxes have a direct adverse effect on financial

constraints because τsE(Xs, I1s) − ψTs > 0, and the regulator needs to set an emissions

tax below τGPs (see Proposition 4). As a result, emissions taxes can only implement the

constrained-efficient allocation if tax rebates are fully pledgeable.

This result implies that, when ψ < 1, there may be scope to improve welfare by using

policy tools other than carbon taxes. The following subsections discuss two potential

alternatives: a cap-and-trade system with tradable pollution permits (Section 4.3) and

green subsidies (Section 4.4). Since borrowers’ initial leverage directly affects the tightness

of the collateral constraint, ex-ante leverage regulation is another natural candidate policy

we consider in Section 5.

4.3 Cap and Trade

An alternative policy tool that can curb emissions is a cap-and-trade system with a

limited quantity Qs of tradeable pollution permits (similar to the EU ETS). Absent

other frictions, such pollution permit markets are equivalent to emissions taxes, and the

Coase Theroem implies that the initial allocation of pollution permits does not affect the

equilibrium level of emissions (see Coase, 1960; Montgomery, 1972). In what follows we

show that this is not necessarily the case in the presence of financial constraints, and

explore whether a cap-and-trade system can achieve higher welfare than emissions taxes.

For each unit of emissions the borrower needs to surrender a permit to the regulator

at t = 2. We assume that a share ϕ of all permits Qs is freely allocated to borrowers

ex-ante, and that the remaining (1−ϕ)Qs permits need to be purchased by the borrower

at the market price ps.
12 Remaining permits can be sold at the market price ps. Note that

with freely allocated permits borrowers retain the same incentives to invest in abatement

because of the opportunity cost of selling unused permits. For now, the regulator takes

the freely allocated share ϕ as given. Later we discuss the welfare-maximizing level of ϕ.

12To simplify the exposition, we assume here that the proceeds from permit sales are redistributed to
investors lump-sum. In the appendix we show that the insights on the sensitivity of welfare to initial
allocation of permits and cap-and-trade being able to implement the constrained efficient allocation hold
also when the permit sale proceeds are distributed back to borrowers lump-sum.
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4.3.1 Mapping Cap-and-Trade to Emissions Taxes

The budget constraints of the borrower and the first order conditions under the cap-and-

trade system are stated in Appendix A.4.2. The FOCs are equivalent to those in the

baseline problem, with ps taking the place of τs. The borrower’s FOC with respect to

abatement determines the relationship between the privately optimal level of abatement

Xs and the permit price ps, and mirrors Eq. (6) of the original problem:

(1 + λs)

(
ps
∂E(Xs, I1s)

∂Xs

+
∂C(Xs, I1s)

∂Xs

)
= 0, (6’)

This condition, together with the market clearing for permits, Qs = Ea
s , jointly determine

a mapping from ps to E
a
s . Thus, the regulator can implement a desired market price of

permits by altering the total quantity of permits. Consequently, we can express the reg-

ulator’s problem as maximizing social welfare by choosing ps in each state s = {B,G}.

Appendix A.4.2 reports the first order condition of the regulator. As in the baseline

setting, the regulator internalizes the effect of the policy on borrowers’ profits and emis-

sions. Comparing the FOCs under the cap-and-trade system with the one in the original

problem yields the following result.

Proposition 6. The allocation implemented with a pollution permit market in which the

quantity of permits is chosen to implement a permit price ps = τs and a fraction ϕ of

permits are allocated freely, is equivalent to the allocation implemented with an emissions

tax τs if the fraction of freely allocated permits is equal to the fraction of tax rebates that

can be pledged, ϕ = ψ.

Proof. See Appendix A.4.2

In both the baseline setting with carbon taxes and the cap-and-trade system the

regulator’s policy amounts to choosing the private marginal cost of emissions represented

either by the tax rate τs or the price of permits ps. The direct effect of the policies on

the financial constraints depend, respectively, on the pledgeability of the tax rebates ψ,

and the share of freely allocated permits ϕ. Pollution permits have a direct effect on

the financial constraint if the borrower needs to purchase some of them ex-ante (i.e. if

1−ϕ > 0). This corresponds to the direct effect of the tax bill on pledgeable income under

emissions taxes. The price of permits also affects the tightness of the financial constraint
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through the collateral externalities, which mirror those discussed in Section 4.1.2.

Coasean independence. An implication of the Coase Theorem is that absent other

frictions the initial allocation of the pollution allowances does not affect the equilibrium

level of externality (see Montgomery, 1972). Proposition 6 combined with our previous

results show that this “Coasean independence” does not hold under financial frictions.13

This result is consistent with recent empirical evidence from the EU ETS that indicates

that Coasen independence holds for large emitters but not for smaller firms (see Zaklan,

2023). As small firms are more likely to be financially constrained, our framework offers

a novel mechanism that may explain these findings.

4.3.2 Free Permits

So far we assumed that the regulator takes the share of freely allocated permits as given.

However, the advantage of using a cap-and-trade system instead of emissions taxes is that

the regulator can choose ϕ optimally. The equivalence result in Proposition 6 implies that

a version of Proposition 5 in which τs = ps and ψ = ϕ holds in the current setting, giving

rise to the following corollary.

Corollary 1. The regulator can implement a constrained-efficient allocation by setting

ϕ = 1 and issuing a quantity of permits that implements a permit price p∗s =
γs+λ∗sθγ

p
s

1+λ∗s
.

The regulator can avoid the problem of the carbon price’s direct effect on borrowers’

financial constraints by allocating all permits for free, i.e., setting ϕ = 1. In this case,

the shadow cost of permits induces borrowers to engage in a constrained-efficient level

of abatement. As in the baseline with ψ = 1, the optimal policy is below the Pigouvian

benchmark p∗s < γs whenever the financial constraint binds (see Proposition 3).

An important policy implication is that a pollution permit market with free allowances

may be a superior policy instrument to carbon taxes in the presence of financial con-

straints. Yet, in practice cap-and-trade systems often do not allocate permits for free.

For example, the EU ETS (the largest emissions permit market in the world), only grants

free allowances equal to a fraction of total emissions, and is gradually reducing the amount

13Previous literature points to transaction costs, market power, uncertainty, allowance allocations
being conditioned on past pollution, deviation from cost-minimization by firms, and unequal regulatory
treatment of firms as potential sources of break-down of Coasean independence (Hahn and Stavins, 2011).
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of free allowances over time.14

We acknowledge that there may be considerations outside our model that motivate

these real-life policy choices. For example, it may be difficult for regulators to correctly

allocate free permits if polluters were privately informed about heterogeneous abatement

costs, potentially triggering undesirable distributional consequences. Similarly, deter-

mining the amount of freely allocated permits by past emissions (a policy referred to as

“grandfathering”), may weaken incentives to reduce emissions as firms may want to avoid

a reduction in the amount of freely allocated permits in the future (see Clò, 2010). While

modeling these frictions is beyond the scope of this paper, our results highlight that, when

accounting for these additional forces, regulators should also weigh the adverse impact of

allowance sales on the tightness of financial constraints.

4.4 Green Subsidies

This subsection considers subsidies. We first analyze a non-redistributive emissions-

reductions subsidy financed by lump-sum taxes on borrowers. We then consider subsidies

financed by investors, which constitute a net transfer from investors to borrowers.

4.4.1 Emissions-Reduction Subsidy

We assume that abatement is non-verifiable, reflecting the difficulty in assessing the opti-

mal technological choices for a specific polluter.15 Regulators can nevertheless implicitly

subsidize abatement investments through a subsidy σs per unit of emissions reductions

below a target level Ēs paid at t = 2. For now, suppose the subsidy is financed by lump-

sum taxes levied on borrowers equal to Ts = σs(Ēs − E(Xs, I1s)), so that the subsidy is

not redistributive. The first order condition with respect to Xs in Eq. (6) is equivalent to

the original first order condition (6) with σs taking the place of τs. Thus, setting σs = τs

the subsidy can achieve the same incentive-effect as an emissions tax.

What about the effect of the subsidy on financial constraints? To map the subsidy to

14For example, the manufacturing industry received 80% of its allowances for free in 2013. This
proportion had been decreased down to 30% in 2020, see European Commission website.

15If abatement was verifiable, regulators could implement the constrained-efficient allocation simply
through a minimum abatement requirement at t = 1 (i.e. using quantity- rather than price-based
regulation). Alternatively, the regulator could pay a subsidy on abatement directly to borrowers at t = 1
to avoid the negative direct effect of the policy on financial constrains. This would be akin to assuming
away the contracting frictions, i.e. setting ψ = 1.
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the baseline model, we assume that borrowers can abscond with a fraction 1 − ψ of the

subsidy payment. As a result, the complementary slackness condition (8) becomes

λs

[
R̃(I1s, E

a
s ) + ψσs(Ēs − E(Xs, I1s))− Ts + e− I0 + µ(I0 − I1s)− C(Xs, I1s)

]
= 0.

This condition maps to Eq. (8) with ψTs−τsE(Xs, I1s) replaced by ψσs(Ēs−E(Xs, I1s))−

Ts. Both terms are equal to −(1− ψ)Ts in equilibrium. This implies that the same effi-

ciency properties as in the baseline model apply. Notably, Proposition 5 still holds, so that

the allocation is constrained efficient only if the subsidy is fully pledgeable, i.e., if ψ = 1.

4.4.2 Redistributive Subsidies

A subsidy may dominate emissions taxes if it is financed through taxes raised from

investors. In this case, the subsidy constitutes a net transfer Ts = σs(Ēs − E(Xs, I1s))

from unconstrained to constrained agents, and can implement the first-best allocation if

the transfer is sufficiently large to ensure financial constraints are slack in all states.

Even if regulators were unable to set an emissions reduction target (for example, due

to unobserved heterogeneity), a transfer could nevertheless be implemented in a lump-

sum fashion. In this case, a lump-sum transfer Ts needs to be combined with other

carbon pricing policies that incentivize emissions reductions. For example, consider the

baseline model with an emissions tax τs and a generic transfer Ts to borrowers paid at

t = 1, financed by lump-sum taxes from investors. With this transfer the complementary

slackness condition (8) becomes

λs

[
R̃(I1s, E

a
s )− τsE(Xs, I1s) + ψTs + Ts + e− I0 + µ(I0 − I1s)− C(Xs, I1s)

]
= 0.

Clearly, if Ts is sufficiently large, then the financial constraint becomes slack. As shown

in Proposition 2, this implies that an emissions tax equal to the Pigouvian benchmark

can implement the first best. The need to combine a green subsidy with a carbon tax

to ensure borrowers have incentives to reduce emissions when emission reduction targets

are difficult to establish may rationalize the simultaneous use of carrots (green subsidies)

and sticks (carbon taxes) often observed in practice.

25



5 Leverage Regulation

Motivated by the recent debate on whether financial regulation should include climate-

related goals (for example, see Brunnermeier and Landau, 2021), this section introduces

leverage regulation that could complement emissions taxes. We analyze a leverage man-

date that fixes the borrower’s inside equity at a level ē, which can be implemented through

a direct mandate, or through taxes and subsidies (see Internet Appendix Section IA.2).

Such policies could be applied directly to non-financial firms, or introduced into the Basel

regulatory framework if borrowers are interpreted as financial institutions (see Internet

Appendix Section IA.3). To streamline the discussion, we focus on the case in which the

financial constraint binds when s = B and is slack when s = G.

5.1 Optimal Leverage Regulation

Consider the problem of a regulator who sets an equity mandate ē at t = 0 and state-

contingent emissions taxes τs at t = 1, so as to maximize welfare. That is, we re-consider

the original optimization problem (23) but allow the regulator to also set e = ē at t = 0.

The regulator’s first order condition w.r.t. ē is given by

u′(A0 − ē)− 1 =

∑
k∈{B,G}

qk

r(τk, Xk, I1k)
∂I∗1k
∂ē︸ ︷︷ ︸

Effect on returns

−(γk − τk)
dE(X∗

s , I
∗
1s)

dē︸ ︷︷ ︸
Uninternalized welfare effect of a change in emissions

 . (13)

In setting the optimal equity mandate, the regulator considers the effect of leverage on

borrower returns and emissions. Since equity increases the final investment scale when

the financial constraint binds, it results in a higher profit earned by borrowers. The

regulator internalizes this effect, similarly to private agents. This is captured by the first

term in the regulator’s FOC. The regulator also accounts for the effect of leverage on

emissions,
dE(X∗

s ,I
∗
1s)

dē
, and the marginal social cost that these generate in excess of what

is already accounted for by the borrower, captured by the second term in Eq. (13). This

term drives the difference between the optimal choice of equity by the borrower and the

optimal equity mandate according to the regulator.

If the financial constraint is slack in state s, then
dE(X∗

s ,I
∗
1s)

dē
= 0. To understand how
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leverage affects emissions when financial constraints bind,
dE(X∗

B ,I
∗
1B)

dē
can be decomposed

as follows:

dE(X∗
B, I

∗
1B)

dē
=

 ∂E(X∗
B, I

∗
1B)

∂I∗1B︸ ︷︷ ︸
Direct effect of I∗1B

− ∂E(X∗
B, I

∗
1B)

∂X∗
B

∂X∗
B

∂I∗1B︸ ︷︷ ︸
Indirect effect through X∗

B


︸ ︷︷ ︸

=
dE(X∗

B
,I∗
1B

)

dI∗
1B

∂I∗1B
∂ē

. (14)

Higher borrower equity loosens financial constraints, which allows the borrower to liq-

uidate less, and therefore implies a higher final investment scale,
∂I∗1B
∂ē

> 0. The direct

effect of a higher investment scale is an increase in emissions, captured by the first term

in brackets in Eq. (14). At the same time, looser financial constraints affect the optimal

abatement choice. This effect is captured by the second term in brackets in Eq. (14).

Note that this is an indirect effect that depends on how the marginal cost and benefit of

abatement respond to changes in the final investment scale (through the cross-derivatives

of C(X, I1) and E(X, I1), see Appendix A.5.1 for the explicit statement of
∂X∗

B

∂I∗1B
).

The overall effect of higher borrower equity on emissions may therefore be positive

or negative: if abatement is more (less) efficient at a higher investment scale, then more

equity can result in a higher (lower) equilibrium level of abatement. Since both the

direct and indirect effects operate through the final investment scale, the sign of
dE(X∗

B ,I
∗
1B)

dē

coincides with the sign of
dE(X∗

B ,I
∗
1B)

dI∗1B
. Using this insight, we can combine Eqs. (13) and (14)

to parsimoniously describe the optimal leverage mandate.

Proposition 7. If in the competitive equilibrium the borrower’s financial constraint is

slack when s = G and binding when s = B, then the optimal equity mandate coincides

with the borrower’s choice of equity if and only if

dE(X∗
B, I

∗
1B)

dI∗1B
[γB − τ ∗B + λB (θγpB − ψτ ∗B)]︸ ︷︷ ︸

T-SCC wedge

= 0. (15)

If ψ < 1 the T-SCC wedge is positive and the optimal equity mandate ē∗ is

• ē∗ > e∗(τ ∗G, τ
∗
B) if

dE(X∗
B ,I

∗
1B)

dI∗1B
< 0,

• ē∗ = e∗(τ ∗G, τ
∗
B) if

dE(X∗
B ,I

∗
1B)

dI∗1B
= 0,

• ē∗ < e∗(τ ∗G, τ
∗
B) if

dE(X∗
B ,I

∗
1B)

dI∗1B
> 0.
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Proof. See Appendix A.5.1

What motivates leverage regulation is the difference in the marginal social and private

costs of changes in emissions induced by higher levels of equity. The left-hand side of

Eq. (15) captures this intuition, consisting of
dE(X∗

B ,I
∗
1B)

dI∗1B
and the expression in square

brackets labeled T-SCC wedge, where T-SCC stands for total social cost of carbon. The

T-SCC wedge is the difference between the total social cost and private cost of emissions

and consists of two components. First, γB−τB is the wedge between the direct social cost

of emissions γB and the private cost of emissions τB. Second, λB (θγpB − ψτB) is the effect

of emissions on pledgeable income caused by the collateral externalities due to physical

climate risk and tax rebates.

The optimal equity mandate can be above or below the level in the competitive

equilibrium, depending on the effect of borrower equity on emissions. From Proposition 4,

the optimal emissions tax is below τGPB if ψ < 1, which implies a positive T-SCC wedge.

This positive T-SCC wedge results in a socially inefficient leverage choice by borrowers

and motivates an equity mandate. If higher equity primarily results in more abatement

rather than lower liquidations, such that
dE(X∗

B ,I
∗
1B)

dI∗1B
< 0, then the socially optimal equity

is above the privately optimal level, ē∗ > e∗. By contrast, if
dE(X∗

B ,I
∗
1B)

dI∗1B
> 0, then higher

equity implies higher emissions, and the optimal equity mandate is below a borrower’s

optimal choice of equity in the competitive equilibrium, ē∗ < e∗.16

5.2 Including Climate Externalities in Financial Regulation

The finding in Proposition 7 that leverage regulation can improve welfare may not seem

surprising given the large body of literature that shows how financial constraints can

motivate financial regulation (for an overview, see Dewatripont and Tirole, 1994). Yet

the following corollary shows that the financial constraint in itself does not motivate

leverage regulation in our model:

Corollary 2. If γus = γps = 0, then ē∗ = e∗ regardless of whether λ∗B = 0 or not.

Proof. Follows from the result in Proposition 3 that τs = 0 if γus = γps = 0, which implies

a zero T-SSC wedge as defined in Proposition 7.

16This result mirrors insights in Dávila and Walther (2022) that, with constraints on the regulation
of some externality-generating activity (here abatement), the optimal second-best regulation of other
choices (here leverage) depends on Pigouvian wedges in the constrained regulation and on how the
perfectly regulated choices affect the imperfectly regulated activity.
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In the absence of environmental externalities there is no benefit to introducing lever-

age regulation – irrespective of whether the financial constraint binds or not. This is

important because it implies that financial constraints alone are not enough to motivate

leverage regulation in our model. Instead, the motive for implementing an equity mandate

ē comes from the interaction between environmental externalities and financial frictions

because binding financial constraints imply that the optimal emissions tax is below the

total social cost of emissions. The results in Proposition 7 thus contribute to the debate

on whether environmental externalities should be included in the mandate of financial

regulatory frameworks (also see Dávila and Walther, 2022; Oehmke and Opp, 2022).

A necessary condition for leverage regulation to improve welfare is that environmen-

tal regulation alone cannot implement a constrained-efficient allocation. With emissions

taxes, this is the case if tax rebates are not fully pledgeable (ψ < 1, see Proposition 5). But

from Section 4.3, a cap-and-trade system can achieve constrained efficiency if permits are

allocated for free. This suggests a “regulatory pecking order” whereby regulators should

first design carbon pricing in a way that minimizes the adverse effect on financial con-

straints before resorting to targeting climate-related objectives using financial regulation.

6 Financial Instruments

In the baseline model borrowers raise financing using short-term debt. This section con-

siders hedging contracts and climate-linked bonds, as well as socially responsible investors.

Long-term debt and external equity financing are covered in the Internet Appendix.

6.1 Hedging and Climate-Linked Bonds

In this extension we allow fairly-priced hedging contracts that pay hB in the bad state

and hG in the good state. Such contracts can be implemented through carbon price

derivatives, or through state-contingent financing such as “climate linkers” that write off

the principal by hB when carbon taxes (or the social cost of emissions) are high, in return
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for an interest payment hG when taxes are low.17 Fair pricing requires that

(1− qB)hG + qBhB = 0. (16)

Using this expression, the problem of borrowers can be expressed in terms of choosing

the optimal hG, while hB follows as hB = − (1−qB)hG
qB

. The borrower’s problem is formally

stated in the Internet Appendix (Section IA.1.1). The first order conditions are the same

as in the baseline model, except for the new first order condition w.r.t. hG, which states

that borrowers equalize the shadow cost of the financial constraints across states:

λG = λB. (17)

This implies that borrowers optimally shift resources from the good, low SCC state to

the bad, high SCC state. If this allows borrowers to ensure that financial constraints are

slack in both states (λG = λB = 0), then a Pigouvian emissions tax τs = γs,∀s ∈ {B,G}

can implement the first-best allocation (see Proposition 2). By allowing firms to hedge

climate-related transition risk, the financial sector can enable efficient emissions taxation

in equilibrium. This result highlights that hedging of climate-related risks may be an

important role the financial sector can play in supporting the transition to a low-carbon

economy, distinct from socially responsible investing that aims to direct firm policies by

taking into account environmental and social factors in investment decisions (e.g., see

Pástor et al., 2021; Oehmke and Opp, 2023; Goldstein et al., 2022; Gupta et al., 2022).

We also contribute to the nascent debate on climate-linked securities. Our analysis shows

that supporting such markets can allow more efficient environmental policy in equilibrium,

thus pointing to benefits that go beyond the direct risk-sharing and informational gains

discussed so far (see Chikhani and Renne, 2022).

If under optimal hedging λG = λB > 0, then emissions taxes are different from the

Pigouvian benchmark, see Proposition 3. We show in the Internet Appendix that in

this case the efficiency results in Proposition 5 apply, so that emissions taxes alone can

implement a constrained-efficient allocation only if tax rebates are fully pledgeable.

Some degree of hedging climate risks could also be achieved using external equity or

17Note that the binary risk-structure in the model implies that emissions taxes and the social cost of
emissions are perfectly correlated. Therefore, it makes no difference whether the contracts are contingent
on the social cost of carbon or the carbon tax.
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long-term debt. However, we show in the Internet Appendix (Sections IA.1.2 and IA.1.3)

that the risk-sharing benefits are more limited compared to carbon price hedging.

6.2 Socially Responsible Investing

This subsection introduces socially responsible investors (SRIs). In the spirit of Pástor

et al. (2021), we assume that SRIs have a distaste for providing funding to polluting

firms, which may incentivize emissions reductions by punishing firms with high emissions

with a higher cost of funding. For SRIs to have an impact, it must be that borrowers

cannot easily substitute away from SRIs to purely financially-motivated investors. For

simplicity, we assume here that all investors are socially responsible, so that borrowers

cannot substitute SRI capital for cheaper financial capital. This is arguably an extreme

case. The main goal of this section is to show that, even in this case, SRIs may have an

adverse effect on emissions abatement by tightening financial constraints.18

We assume that SRIs derive negative utility proportional to the emissions generated

by the firm they provide funding to, weighted by a preference parameter ω (see Internet

Appendix Section IA.1.4 for a formal statement of investors’ preferences). SRIs’ break-

even requires that d1 = r1d1 − ωE(Xs, I1s). The borrower’s problem now yields the

following FOC for abatement and complementary slackness condition:

(1 + λs)

[
(τs + ω)

∂E(Xs, I1s)

∂Xs

+
∂C(Xs, I1s)

∂Xs

]
= 0, (6”)

λs[R̃(I1s, E
a
s )− (τs + ω)E(Xs, I1s) + ψTs − d0 + µ(I0 − I1s)− C(Xs, I1s)] = 0. (8”)

These correspond to the original conditions (6) and (8), with τs + ω taking the place of

τs. Eq. (6”) captures the incentive effect of SRIs on abatement that comes from charging

firms a premium on their financing cost proportional to emissions. This incentive effect

works in the same way as an emissions tax.

A critical difference between the tax and the SRI premium is the effect on financial con-

straints, as seen in the complementary slackness condition (8”). The disutility SRIs derive

18This insight would continue to hold as long as borrowers cannot perfectly substitute away SRI fund-
ing. Oehmke and Opp (2023) show that SRIs can achieve impact even when purely financially-motivated
capital is abundant. A necessary condition is that investors are consequentialists who care about emis-
sions no matter where they are produced, rather than only about the emissions they are directly respon-
sible for. Considering consequentialist SRIs would require analyzing how they internalize their effect on
equilibrium environmental policy, which is beyond the scope of this paper. The SRI preferences here
resemble preferences for value-alignment, consistent with experimental evidence in Bonnefon et al. (2019).
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from lending to polluters tightens the constraint by ωE(Xs, I1s). By contrast, the effect

of the emissions tax on the financial constraint is (partially) offset by the tax rebate Ts.

Corollary 3. If investors derive a disutility ω from the emissions of firms they invest in,

the allocation is equivalent to the one achieved with a carbon tax τs = ω and non-pledgeable

tax rebates ψ = 0.

This implies that taxes and SRI premiums are imperfect substitutes in incentivizing

borrowers to abate. In fact, the presence of SRIs may worsen the trade-offs faced by a

regulator setting emissions taxes due to the tightening of borrowers’ financial constraints.

7 Conclusion

This paper provides an analytical framework to shed light on how to design and combine

carbon pricing with other regulatory tools when firms are subject to financial constraints

and to endogenous climate-related transition and physical risks. We find that emissions

taxes alone can only implement a constrained-efficient allocation if tax rebates are fully

pledgeable. Otherwise, welfare can be improved by replacing emissions taxes with a

cap-and-trade system with ex-ante freely allocated pollution permits, or by complement-

ing carbon taxes with leverage regulation. Fostering financial markets that allow firms

to hedge regulatory risk, such as carbon-price derivatives or climate-linked bonds, can

improve equilibrium climate policies by enabling firms to shoulder higher carbon taxes.

Another important insight is that physical climate risks give rise to a collateral ex-

ternality that affects how emissions taxes interact with financial constraints. Higher

emissions taxes tighten financial constraints if borrowers have carbon-emitting assets,

but emissions taxes can ease financial constraints if they have a positive effect on the col-

lateral value of assets exposed to physical climate risk. Optimal emissions pricing needs

to account for climate-induced collateral externalities, and thus may be either above or

below a Pigouvian benchmark rate equal to the direct social cost of emissions.
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A Appendix

A.1 First Best (Proposition 1)

The first best allocation maximizes social welfare subject to aggregate resource constraint:

max
I1s,Xs,cb0

u(cb0)− cb0 +
∑

k∈{G,B}

qk [µ(I0 − I1k)− C(Xk, I1s) + ρI1s − γsE(Xs, I1s) + κIs(I0 − I1s)]

with κ̄Is the Lagrange multiplier on the constraint that I1s ≤ I0. The FOC’s read:

u′(cb0) = 1,

ρ− µ− γs
∂E(Xs, I1s)

∂I1s
− ∂C(Xs, I1s)

∂I1s
− κ̄I1s = 0,

γs
∂E(Xs, I1s)

∂I1s
+
∂C(Xs, I1s)

∂I1s
= 0.

By Assumption 2 liquidations are inefficient, which implies κ̄Is > 0 and I1s = I0.

A.2 Competitive Equilibrium

A.2.1 Borrower’s Lagrangian

Since u′(0) = ∞ it must be that cb0 > 0. The financial constraint (4) implies cb2s > 0, thus

(3) never binds. Thus, the problem of borrowers can be stated as:

max
Xs,I1s,d1s,e

L = u(A0 − e)

+
∑

k∈{G,B}

qk [µ(I0 − I1k) + e− I0 − C(Xk, I1k) +R(I1k, E
a
k)− τkE(Xk, I1k) + Tk]

+
∑

k∈{G,B}

qk

{
λk

[
R̃(I1k, E

a
k)− τkE(Xk, I1k) + ψTk − d1k

]
+ κIkI1k + κIk[I0 − I1k]

}
+

∑
k∈{G,B}

qkκc1k [d1k + µ(I0 − I1k) + e− I0 − C(Xk, I1k)] ,

(18)

The first order condition w.r.t. d1s implies that λ1k = κc1k . The remaining FOC’s of the

problem are given in Section 3.
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A.2.2 Limit on t = 0 Borrowing

Throughout the paper we focus on the case d0 < µI0, because otherwise borrowers would

forgo the project. To see this, note that if the borrower defaults at t = 1, investors lending

at t = 0 can force (partial) liquidation of the project and seize the liquidation proceeds

µ(I0−I1). Further note that µI0 is the most that the borrower can pledge to outsiders be-

cause pledgeable income decreases in I1s by Assumption 2. This implies that investors are

willing to lend at most µI0 at t = 0, i.e., borrowing is subject to the constraint d0 ≤ µI0.

Would borrowers want to borrow to the point where this constraint just binds, d0 =

µI0? In this case, investors would force liquidation at t = 1 to recoup their initial

debt because µI0 is the highest pledgeable income. Thus, borrower utility is given by

u(A0− I0(1−µ)). But this is dominated by forgoing the project and fully consuming the

endowment at t = 0, which gives the borrower u(A0). Therefore, borrowers would always

forgo the project if the optimal d0 ≥ µI0, motivating our focus on the case d0 < µI0.

Finally, note that with d0 < µI0 the borrower has no incentive to default on t = 0

debt at t = 1. If the borrower defaults, investors force liquidation to the point where

µ(I0 − I1) = d0. The borrower can then decide to continue the project, choose Xs, I1s,

and d1s subject to the constraints listed in the baseline problem and the additional con-

straint d0 = µ(I0 − I1). The presence of an additional constraint implies that defaulting

is weakly dominated by repaying d0 at t = 1.

A.2.3 Proof of Lemma 1

Equation (7) evaluated at λs = 0 is r(τs, Xs, I1s) − κIs + κIs = 0. By Assumption 2.1

r(τs, Xs, I1s) > 0, which implies that the solution requires κIs > 0 (i.e., I0 = I∗1s).

The complementary slackness condition (8) can be reformulated as

λsS(τs, Xs, I1s, e) = 0. (8’)

By Assumption 2.2 liquidating investments eases financial constraints. Thus, if the con-

straint is slack at full investment scale, S(τs, Xs, I0, e, γ
p
s ) ≥ 0, it is slack for any I1s < I0.

Otherwise, i.e. if S(τs, Xs, I0, e, γ
p
s ) < 0, the financial constraints binds, λs > 0. In this

case the complementary slackness condition (8’) requires that borrowers choose I∗1s s.t.

S(τs, Xs, I
∗
1s, e, γ

p
s ) = 0. Thus, if λs > 0 it must be that I∗1s < I0 and κIs = 0.
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A.3 Optimal Policy

A.3.1 Proof of Lemma 2 and statement of Assumption 3

Totally differentiating Eq. (6) with respect to τs allows us to find ∂X∗
s

∂τs
:

∂X∗
s

∂τs
=

∂E(X∗
s ,I

∗
1s)

∂X∗
s

− ∂2N(X∗
s ,I

∗
1s,τs)

∂X∗
s ∂I

∗
1s

∂I∗1s
∂τs

−∂2C(X∗
s ,I

∗
1s)

∂(X∗
s )

2

(19)

where N(Xs, I1s, τs) = −τsE(Xs, I1s) − C(Xs, I1s) and we use that ∂2E(X,I1)
(∂X)2

= 0. If the

financial constraint is slack, λ∗s(τs, ē) = 0, then I∗1s = I0, so
∂I∗1s
∂τs

= 0 and ∂X∗
s

∂τs
> 0. If the

financial constraint is binding, λ∗s(τs, ē) > 0, then
∂I∗1s
∂τs

follows from totally differentiating

Eq. (8) with respect to τs yields:

∂I∗1s
∂τs

=
(1− ψ)E(X∗

s , I
∗
1s)− (ψτs − θγps )

∂E(X∗
s ,I

∗
1s)

∂X∗
s

∂X∗
s

∂τ

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s)

(20)

To further simplify, we use a shorthand notation: F (X∗
s , I

∗
1s) = F , F ′

w = ∂E(Ws,Vs)
∂Ws

,

N ′′
wv =

∂2N(Ws,Vs,τs)
∂Ws∂Vs

and r̃(τs) = r̃(τs, X
∗
s , I

∗
1s). Moreover, we use (19) and (20) to get:

∂I∗1s
∂τs

=
(1− ψ)EC ′′

x2 + (ψτs − θγps )(E
′
x)

2

r̃(τs(1− ψ) + θγps )C ′′
x2 + (ψτs − θγps )E ′

xN
′′
xI

(21)

∂X∗
s

∂τs
=

(1− ψ)EN ′′
xI − r̃(τs(1− ψ) + θγps )E

′
x

r̃(τs(1− ψ) + θγps )C ′′
x2 + (ψτs − θγps )E ′

xN
′′
xI

(22)

Assumption 3 requires that the parameters are such that ∂X∗
s

∂τs
> 0. This holds if the

numerator and denominator of (22) have the same sign. The denominator of (22) is nega-

tive for ψ = 0 and γps = 0. More generally, this expression is negative if and only if r̃(τs−

τsψ + θγps )C
′′
x2 < −(ψτs − θγps )N

′′
xIE

′
x. The numerator of (22) is negative if r̃(θγps )E

′
x >

(1−ψ)(τsE ′
IE

′
x+EN

′′
xI). This is true whenever ψ = 1. Since the RHS of the inequality is

monotone in ψ, the numerator of (22) is negative across the full range of ψ if r̃(θγp)E ′
x >

τsE
′
IE

′
x + EN ′′

xI . Thus, Assumption 3 can be restated as ∀X∗
s (τs), I

∗
1s(τs), τs < τ̄ :

• r̃(θγps , X
∗
s , I

∗
1s)

∂E(X∗
s ,I

∗
1s)

∂X∗
s

> E(X∗
s , I

∗
1s)

∂2N(X∗
s ,I

∗
1s,τs)

∂X∗
s ∂I

∗
1s

+ τs
∂E(X∗

s ,I
∗
1s)

∂X∗
s

∂E(X∗
s ,I

∗
1s)

∂I∗1s
&

• r̃(τs − τsψ + θγps , X
∗
s , I

∗
1s)

∂2C(X∗
s ,I

∗
1s)

∂(X∗)2
< −(ψτs − θγps )

∂2N(X∗
s ,I

∗
1s,τs)

∂X∗
s ∂I

∗
1s

∂E(X∗
s ,I

∗
1s)

∂X∗
s

Lemma 2 follows from observing that the numerator of equation (21) which defines
∂I∗1s
∂τs

is negative if γps >
ψ
θ
τs+

(1−ψ)EC′′
x2

θ(E′
x)

2 = γ̂p(τs) and positive if γps < γ̂p(τs). The denominator

of (21) is the same as that of ∂X∗

∂τs
, i.e. negative under Assumption 3.
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A.3.2 Proof of Proposition 3

The regulator’s problem can be stated as:

max
τG,τB

u(A0 − e) + e− I0 +
∑

k∈{B,G}

qk {ρI∗1s + µ(I0 − I∗1k)− γsE(X
∗
k , I

∗
1k)− C(X∗

k , I
∗
1k)} .

(23)

The first order condition of the regulator with respect to τ is given by:

−
(
γs
∂E(Xs, I1s)

∂Xs

+
∂C(Xs, I1s)

∂Xs

)
∂X∗

s

∂τs
+

(
ρ− µ− γs

∂E(Xs, I1s)

∂I1s
− ∂C(Xs, I1s)

∂I1s

)
∂I∗1s
∂τs

= 0

Using (6) and the definition of r(τ,X, I1) the above simplifies to (10).

Since ∂X∗
s

∂τs
> 0 and r(τs, Xs, I1s) > 0 the optimal tax is:

• lower than the direct social cost of carbon τs < γs if
∂I∗1s
∂τs

< 0 and γs > 0

• equal to the direct social cost of carbon τs = γs if
∂I∗1s
∂τs

= 0 or if
∂I∗1s
∂τs

< 0 and γs = 0

• higher than the direct social cost of carbon τs > γs if
∂I∗1s
∂τs

> 0

Using Lemma 2 to determine the sign of
∂I∗1s
∂τs

yields the result in Proposition 3.

A.3.3 Proof of Proposition 4

Using Eq. (11) in Eq. (10) and simplifying yields the following optimal emissions tax:

r(γs, X
∗
s , I

∗
1s)(1− ψ)E(X∗

s , I
∗
1s) =

∂E(X∗
s , I

∗
1s)

∂X∗
s

∂X∗
s

∂τs
[γs − τs + λ∗s(θγ

p
s − γτs)] r̃(τs, X

∗
s , I

∗
1s)

(24)

If ψ = 1, then the LHS of the above is equal to zero, so the tax must solve γs − τs +

λ∗s(θγ
p
s − τs). If ψ < 1, then the LHS of the above is positive, so it must be that

γs − τs + λ∗s(θγ
p
s − τs) > 0. If γs = 0 then τs = 0 solves Eq. (10).

Optimal emissions tax

Using Eq. (19) in Eq. (24) we can express the optimal emissions tax as:

r(γs, X
∗
s , I

∗
1s)[(1− ψ)EC ′′

x2 + (ψτs − θγps )(E
′
x)

2]

(1− ψ)EN ′′
xI − r̃(τs(1− ψ) + θγps , X∗

s , I
∗
1s)E

′
x

= (γs − τs)E
′
x (25)
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A.4 Efficiency and Other Policies

A.4.1 Proof of Proposition 5

We define the constrained efficient allocation in which a social planner can choose Xs, I1s

and e directly without any policy instruments, but subject to the same constraints as

private agents. The planner’s problem can be written as:

max
Xs,I1s,d1s,e

L = u(A0 − e) + e− I0 +
∑

k∈{B,G}

qk {ρI1s + µ(I0 − I1k)− γsE(Xk, I1k)− C(Xk, I1k)}

+
∑

k∈{B,G}

qk

{
λSPk

[
R̃(I1k, E

a
k) + µ(I0 − I1k)− C(Xk, I1k) + e− I0

]
+ [κIkI1k + κIk(I0 − I1k)]

}
.

(26)

The constrained efficient levels of ISP1s , X
SP
s , λSPs , eSP are pinned down by the FOCs with

respect to Xs, I1s, and e and the complementary slackness condition:

−(γs + λSPs θγps )
∂E(Xk, I1s)

∂Xs

− (1 + λSPs )
∂C(Xs, I1s)

∂Xs

= 0, (27)

r(γs, Xs, I1s) + λSPs r̃(θγps , Xs, I1s) + κIk − κIk = 0, (28)

−u′(A0 − e) + 1 + κe + qGλ
SP
G + qBλ

SP
B = 0, (29)

λSPs [R̃(I1s, E
a
s )− I0 + µ(I0 − I1s) + e− C(Xs, I1s)] = 0. (30)

The equilibrium is constrained efficient if and only if X∗
s (τ

∗) = XSP
s , I∗1s = ISP1s and e∗ =

eSP . We first establish when X∗
s (τ

∗) = XSP
s and then move to the remaining conditions.

Using the private FOC’s wrt. Xs given by (6) to find the level of τSP that would

implement the constrained efficient level of abatement X∗
s = XSP

s consistent with (27)

we get: γs + λSPs θγps = (1 + λSPs )τSPs , where: λSPs = − r(γs,XSP
s ,ISP

1s )+κIs−κIs
r̃(θγps ,XSP

s ,ISP
1s )

. Focusing

on the case when ISP1s is in the interior solution, the emissions tax that implements the

constrained efficient allocation is

τSPs =
γsr̃(θγ

p
s , X

SP
s , ISP1s )− θγpsr(γs, X

SP
s , ISP1s )

r̃(θγps , XSP
s , ISP1s )− r(γs, XSP

s , ISP1s )
. (31)

To determine if X∗
s is constrained efficient, we plug in τSPs into the condition that defines
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the optimal tax set by the regulator (25). With some algebra it simplifies to:

(1− ψ)
[
r(γs, X

∗
s , I

∗
1s)
(
EC ′′

x2 − τSPs (E ′
x)

2
)
− (γs − τSPs )

(
E ′
xEN

′′
xI + (E ′

x)
2τSPE ′

I

)]
= 0

(32)

The LHS of (32) is equal to zero whenever ψ = 1. In this case τSPs corresponds to the tax

implemented by the regulator. To show that when ψ = 1 also I∗1s = ISP1s notice that the

complementary slackness condition (8) collapses to (30). Moreover, private and planner’s

FOC’s with respect to e are equal whenever

−r(γs) + κSPsI − κSPsI
r̃(θγps )

= −r(τ
SP
s )− κsI + κsI
r̃(τSPs )

(33)

which holds at τSPs defined in (31). Thus, if ψ = 1 the competitive equilibrium is

constrained efficient.

If ψ < 1 then the LHS of (32) is equal to zero only if:

(τs)
2E ′

x[E
′
xE

′
I − EE ′′

xI ] + τsE
′
x[E(γE

′′
xI − C ′′

xI)− r(0, X∗
s , I

∗
1s)E

′
x]+

[r(γ,X∗
s , I

∗
1s)EC

′′
x2 + γE ′

xEC
′′
xI ] = 0

(34)

Let τs = τ̃as and τs = τ̃ bs denote the solutions of (34). Given that LHS is quadratic

in τs, if the solution to (34) exists τ̃as and τ̃ bs are functions of ∂2C(X,I1)
∂X∂I1

, ∂2E(X,I1)
∂X∂I1

and

∂2C(X,I1)
(∂X)2

. Notice that the tax rate that is needed to implement the constrained efficient

level of abatement, τSP , given in (31) does not depend on these cross- and second-order-

derivatives. Thus, condition (34), which ensures that X∗
s = XSP

s is generally not satisfied

except in a knife’s edge case in which the values of these derivatives are coincidentally

such that τ̃as = τSP . This implies that the allocation implemented by the tax optimally

set by the regulator is constrained inefficient when ψ < 1.
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A.4.2 Optimal Price of Permits

The budget constraints of the borrower under the pollution trading scheme are:

cb1s = µ(I0 − I1s) + d1s + e− I0 − C(Xs, I1s) ≥ 0, (2’)

cb2s = R(I1s, E
a
s )− (1− ϕ)Qsps + ps(Qs − E(Xs, I1s))− d1s ≥ 0, (3’)

d1s ≤ R̃(I1s, E
a
s ). (4’)

The FOCs of the borrower’s problem and the complementary slackness condition are:

(1 + λs)

(
ps
∂E(Xs, I1s)

∂Xs

+
∂C(Xs, I1s)

∂Xs

)
= 0, (6’)

ρ(1 + λsθ)− (1 + λs)

[
µ+

∂C(Xs, I1s)

∂I1s
+ ps

∂E(Xs, I1s)

∂I1s

]
− κIs + κIs = 0, (7’)

u′(A0 − e)− 1− (1− q)λG − qλB = 0, (9’)

λ[R̃(I1s, E
a
s ) + I0 + µ(I0 − I1s) + e− C(Xs, I1s) + ps(ϕQs − E(Xs, I1s))] = 0. (8’)

The first order condition of the regulator is:

r(γs, X
∗
s , I

∗
1s)
∂I∗1s
∂ps

− (γs − ps)
∂E(X∗

s , I
∗
1s)

∂X∗
s

∂X∗
s

∂ps
+ κp = 0 (10’)

To find ∂X∗
s

∂ps
, we take a total derivative of (6’) with respect to ps. This yields:

∂X∗
s

∂ps
=

∂E(X∗
s ,I

∗
1s)

∂X∗
s

− ∂2N(X∗
s ,I

∗
1s,ps)

∂X∗
s ∂I

∗
1s

∂I∗1s
∂ps

∂2C(X∗
s ,I

∗
1s)

∂(X∗
s )

2

(19’)

To find
∂I∗1s
∂ps

take a total derivative of (8’) with respect to ps, keeping in mind that

Qf
s = ϕQs = ϕEa

s and Ts = (1− ϕ)Ea
s .

∂I∗1s
∂ps

=
(1− ϕ)E(X∗

s , I
∗
1s)− (ϕps − θγps )

∂E(X∗
s ,I

∗
1s)

∂X∗
s

∂X∗
s

∂ps

r̃(ps(1− ϕ)− θγps , X∗
s , I

∗
1s)

(20’)

Let’s define: ∂X∗
s

∂τs
= gX(τs, ψ) and

∂I∗1s
∂τs

= gI(τs, ψ). Comparing (19) with (19’) and (20)

with (20’), it is straightforward that ∂X∗
s

∂ps
= gX(ps, ϕ) and

∂I∗1s
∂ps

= gI(ps, ϕ). Thus, the first

order condition of the regulator’s problem in the baseline model (10) is equivalent to the

first order condition of the problem of choosing Qs to implement ps taking as given ϕ,
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given by (10’). The two problems are exactly the same if ψ = ϕ.

So far we assumed that the proceeds from the sale of permits are redistributed to

investors. If the proceeds from sale were distributed to borrowers in the form of a lump-

sum rebate Ts = (1 − ϕ)Qsps to the borrower, the t = 2 budget constraint and the

financial constraints would be:

cb2s = R(I1s, E
a
s )− (1− ϕ)Qsps + ps(Qs − E(Xs, I1s)) + Ts − d1s ≥ 0, (3”)

d1s ≤ R̃(I1s, E
a
s ) + ψTs. (4”)

The private FOC’s are unaffected by the rebate. The regulator’s FOC is only altered

through the change in
∂I∗1s
∂ps

which now reads:

∂I∗1s
∂ps

=
(1− ϕ− ψ − ϕψ)E(X∗

s , I
∗
1s)− ((ϕ+ ψ + ϕψ)ps − θγps )

∂E(X∗
s ,I

∗
1s)

∂X∗
s

∂X∗
s

∂ps

r̃(ps(1− ϕ− ψ − ϕψ)− θγps , X∗
s , I

∗
1s)

(20”)

The equivalence between the emissions taxes and the cap-and-trade solution holds now

if and only if ϕ + ψ − ϕψ = ψ. This implies that at ϕ = 1 the cap-and-trade solution

corresponds to the emissions taxes solution with ψ = 1.

A.5 Leverage Regulation

A.5.1 Proof of Proposition 7

The first order conditions of the regulator with respect to ē is:

u′(A0 − ē)− 1 = +
∑

k∈{G,B}

qk

[(
ρ− µ− γs

∂E

∂I1s
− ∂C

∂I1s

)
∂I∗1s
∂ē

−
(
γs
∂E

∂Xs

+
∂C

∂Xs

)
∂X∗

s

∂ē

]
(35)

Using the private FOC wrtX and the fact that r(γs, X
∗
s , I

∗
1s) = r(τs, X

∗
s , I

∗
1s)+τs

∂E(X∗
s ,I

∗
1s)

∂I∗1s
−

γs
∂E(X∗

s ,I
∗
1s)

∂I∗1s
, yields (13).

Effect of equity on liquidations and abatement. Totally differentiating (6) with

respect to ē allows us to find:

∂X∗
s

∂ē
=

∂2N(X∗
s ,I

∗
1s,τs)

∂X∗
s ∂I

∗
1s

∂2C(X∗
s ,I

∗
1s)

∂(X∗
s )

2

∂I∗1s
∂ē

(36)

42



where we use N(Xs, I1s, τs) = −τsE(Xs, I1s)−C(Xs, I1s). If λ
∗
s(τs) = 0, then I∗1s = I0, so

∂I∗1s
∂ē

= 0 and ∂X∗
s

∂ē
= 0. If λ∗s(τs) > 0, then the interior solution of I∗1s(τs) is pinned down

by (8). By totally differentiating (8) with respect to ē we get:

∂I∗1s
∂ē

=
−1− (ψτs − θγps )

∂E(X∗
s ,I

∗
1s)

∂X∗
s

∂X∗
s

∂τs

r̃(τs(1− ψ) + θγps , X∗
s , I

∗
1s)

(37)

Combining (36) and (37) and using the shorthand notation, yields:

∂I∗1s
∂ē

=
−C ′′

x2

r̃(τs(1− ψ) + θγps )C ′′
x2 + (ψτs − θγps )E ′

xN
′′
xI

(38)

∂X∗
s

∂ē
=

−N ′′
xI

r̃(τs(1− ψ) + θγps )C ′′
x2 + (ψτs − θγps )E ′

xN
′′
xI

(39)

The denominator of (39) is negative by Assumption 3, Therefore ∂X∗
s

∂ē
> 0 if and only if

N ′′
xI > 0, i.e. τ ∗s

∂2E(X∗
s ,I

∗
1s)

∂X∗
s ∂I

∗
1s

+
∂2C(X∗

s ,I
∗
1s)

∂X∗
s ∂I

∗
1s

< 0.

Comparing private and socially optimal equity choice. Focusing on the case

when the financial constraint binds only in the bad state and using these in Eq.(35)

allows us to restate the regulator’s and borrowers FOCs as, respectively:

u′(A0 − ē)− 1 =
−r(τB)C ′′

x2 + (γB − τB)[E
′
IC

′′
x2 + E ′

xN
′′
xI ]

r̃(τB(1− ψ) + θγpB)C
′′
x2 + (ψτB − θγpB)E

′
xN

′′
xI

(40)

u′(A0 − e)− 1 =
−r(τB)
r̃(τB)

(41)

Thus, borrowers choose a lower level of equity than the regulator if and only if:

−r(τB)C ′′
x2 + (γB − τB)[E

′
IC

′′
x2 + E ′

xN
′′
xI ]

r̃(τB(1− ψ) + θγpB)C
′′
x2 + (ψτB − θγpB)E

′
xN

′′
xI

>
−r(τB)
r̃(τB)

Since under Assumption 3 r̃(τB(1 − ψ) + θγpB)C
′′
x2 + (ψτB − θγpB)E

′
xN

′′
xI < 0, and by

Assumption 2 r̃(τ) < 0 the above can be rewritten as:

(
E ′
I + E ′

x

N ′′
xI

C ′′
x2

)[
(γB − τB)−

r(τ)

r̃(τ)
(θγpB − ψτB)

]
< 0.

Borrowers choose a higher level of equity than the regulator if the LHS is larger than

zero. This yields condition (15) in Proposition 7.

To see that the borrower’s choice of equity corresponds with that of the regulator
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when ψ = 1, plug in the optimal emissions tax τ ∗B into (15). If ψ < 1, there is a motive

for leverage regulation as long E ′
I + E ′

x
N ′′

xI

C′′
x2

̸= 0 because, as we have shown in Appendix

A.3.3, the optimal tax set by the regulator τ ∗B <
γB+λ∗Bθγ

p
B

1+λ∗B
= τGPB in this case. Specifically,

the RHS of regulator’s FOC is higher than the RHS of borrower’s FOC if and only if:

∂E(X∗
B, I

∗
1B)

∂I∗1B
+
∂E(X∗

B, I
∗
1B)

∂X∗
B

∂2N(X∗
B ,I

∗
1B ,τB)

∂XB∂I
∗
1B

∂2C(X∗
B ,I

∗
1B)

∂(X∗
B)2

< 0 (42)

If the RHS of regulator’s FOC (13’) is higher than the RHS of borrower’s FOC (13’) then

the regulator prefers a higher level of equity than the borrower. In this case, regulator

implements binding leverage regulation.
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IA.1 Financial Instruments

IA.1.1 Hedging

With hedging as described in Section 6.1, the borrower’s problem can be written as the

following Lagrangian:

max
Xs,I1s,d1,e,hs

L = u(A0 − e) +
∑

k∈{G,B}

qkκc1k [d1k + µ(I0 − I1k) + e+ hk − I0 − C(Xk, I1k)]

+
∑

k∈{G,B}

qk [µ(I0 − I1k) + e+ hk − I0 − C(Xk, I1k) +R(I1k, E
a
k)− τkE(Xk, I1k) + Tk]

+
∑

k∈{G,B}

qk

{
λk

[
R̃(I1k, E

a
k)− τkE(Xk, I1k) + ψTk + hk − d1k

]
+ κIkI1k + κIk[I0 − I1k]

}
(IA.1)

The problem and first order conditions are equivalent to the problem in the main text (18),

except that now additionally borrowers choose hs subject to the fair pricing condition

(16). Using (16) to substitute hB = − (1−qB)hG
qB

, the first order condition w.r.t. hG is given

by

λG = λB.

Constrained Efficiency With hedging, the problem of a constrained social planner is

similar to Eq. (26), but with hs as an additional choice variable, analogous to the updated

borrower problem (IA.1).

max
Xs,I1s,d1s,e,hs

L = Ai0 + Ai1 + u(A0 − e) + e− I0

+
∑

k∈{B,G}

qk {R(I1k, Ea
k) + µ(I0 − I1k) + hk − 2γukE(Xk, I1k)− C(Xk, I1k)}

+
∑

k∈{B,G}

qkλ
SP
l

{
R̃(I1k, E

a
k) + hk + µ(I0 − I1k)− C(Xk, I1k) + e− I0

}
+

∑
k∈{B,G}

qk [κIkI1k + κIk(I0 − I1k)] .

(IA.2)

Using (16) to substitute hB = − (1−q)hG
q

, the first order condition w.r.t. hG is equivalent

to the borrower’s first order condition:

λSPG = λSPB .
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All other first order conditions are the same as in the model without hedging. This

implies the efficiency properties of the equilibrium allocation are the same as in the base-

line model without hedging, as outlined in Proposition 5.

Some degree of hedging climate risks can also be achieved using external equity or

long-term debt. Similar to hedging contracts, these alternative funding sources could

enable a more efficient environmental policy if they bring down the shadow cost of the

financial constraint in the bad state. However, the capacity to share risks using these

contracts is more limited than that of climate-linked securities, as we show formally show

below.

IA.1.2 External Equity

Intuitively, equity financing provides less flexible risk sharing compared to hedging con-

tacts because equity value is proportional to firm value, rather than flexibly designing

the payoffs hG and hB to ensure λB = λG (see Section 6.1 in the main paper).

To see this formally, suppose at t = 0 borrowers raise external equity financing eext

by selling a fraction α of pledgeable firm value. Fair pricing of equity requires that

eext = α

 ∑
k∈{G,B}

qk

(
R̃(I1k, E

a
k)− τkE(Xk, I1k) + ψTk

) .
This implies that borrower consumption at t = 2 is now given by

cb2s = [R(I1s, E
a
s )− τsE(Xs, I1s) + Ts]− α

[
R̃(I1s, E

a
s )− τsE(Xs, I1s) + ψTs

]
= R(I1s, E

a
s )− τsE(Xs, I1s) + Ts − eextβs,

where βs =
R̃(I1s,Ea

s )−τsE(Xs,I1s)+ψTs∑
k∈{G,B} qk(R̃(I1k,E

a
k ,γ

p
k)−τkE(Xk,I1k)+ψTk)

, with βH ≥ 1 ≥ βL. This implies that

equity financing results in a transfer of eext(βH − βL) from the good state to the bad

state. Consequently, it is equivalent to an allocation where firms raise d0 = eext in debt

financing and additionally write a hedging contract with hG = eext(1 − βH) ≤ 0 and

hB = eext(1 − βL) ≥ 0. The benefit of a hedging contract is that borrowers can flexibly

design the payoffs hG and hB to ensure λB = λG (see Subsection 6.1 above).

The efficiency results from our baseline model continue to hold when borrowers fund

2



themselves with outside equity, whenever the resulting risk sharing does not achieve

λG = λB = 0.

IA.1.3 Long-Term Debt

Long-term debt can only provide risk-sharing capacity if borrowers default on debt in

the bad state as investors are compensated for that risk with a higher interest rate paid

in the good state. As with equity financing, the risk-sharing achieved with long-term

debt is less flexible than that with carbon price derivatives or climate-linked securities.

Additionally, we show here that defaulting on long-term debt can result in a severe debt

overhang problem that hinders abatement investments. This is in contrast to the baseline

model with short-term debt, where borrowers optimally do not default (see Lemma ??

in the main text).

To see this formally, suppose borrowers can raise long-term debt dLT at t = 0 due at

t = 2, with an interest rate rLT between t = 0 and t = 2. Borrowers can additionally

raise short-term debt.

In the baseline model, borrowers have no incentive to default on short-term debt (see

Lemma ?? in the paper), and the t = 1 financial constraint (4) ensures that in equilibrium

borrowers do not abscond any resources at t = 2. This appendix first shows that the

allocation with risk-free long-term debt is equivalent to the one in the baseline model

with short-term debt only. We then show that long-term debt may result in default in

s = B if the face value is high enough. While default allows for some risk-sharing by

shifting repayments from the bad to the good state, we show below that risky long-term

debt comes at the expense of exposing borrowers to a debt overhang problem that results

in borrowers making no abatement investments.

Risk-free debt. We first consider the case in which the long-term debt is risk-free, so

that the promised and realized repayment is rdLT = dLT . With long-term debt I0 =

d0 + dLT + e and the t = 2 budget constraint of borrowers reads:

cb2s = R(I1s, E
a
s )− τsE(Xs, I1s)− d1s − rsdLT + Ts (IA.3)
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The borrower also faces an updated financial constraint:

dLT + d1s ≤ R̃(I1s, E
a
s )− τsE(Xs, I1s) + ψTs, (IA.4)

Taking these into account gives rise to the following Lagrangian:

max
Xs,I1s,d1s,dLT ,d0

L = u(A0 − I0 + d0 + dLT )

+
∑

k∈{G,B}

qk [µ(I0 − I1k)− d0 − C(Xk, I1k) +R(I1k, E
a
k)− τkE(Xk, I1k) + Tk − dLT ]

+
∑

k∈{G,B}

qk

{
λk

[
R̃(I1k, E

a
k)− τkE(Xk, I1k) + ψTk − d1k − dLT

]
+ κIkI1k + κIk[I0 − I1k]

}
+

∑
k∈{G,B}

qkκc1k [d1k + µ(I0 − I1k)− d0 − C(Xk, I1k)] ,

(IA.5)

The FOCs wrt Xs, I1s and d1s are the same as in the original problem. The FOC wrt

d0 and dLT read, respectively,

u′(cb0)− 1− qλG − (1− q)λB = 0

u′(cb0)− qλG − (1− q)λB − 1 = 0

Thus, the borrower chooses its’ inside equity e so that to satisfy u′(cb0) = 1 + qλG +

(1− q)λB, and is indifferent between short-term and long-term debt if long-term debt is

risk-free. This implies that the allocation with risk-free long-term debt is equivalent to

the allocation with short-term debt in the baseline model.

Risky debt. The possibility of default on long-term debt makes the repayment of debt

state-contingent. As investors need to break even, they will charge a higher interest rate,

thereby allowing borrowers to reallocate resources from s = G to s = B.

Anticipating the default, investors are not willing to provide short-term debt at t = 1

in s = B, so that previous period short-term debt repayment and abatement investments

must be funded by liquidations C(XB, I1B)+d0 = µ(I0− I1B). Using this, the borrower’s

optimal choice of abatement and liquidation at t = 1 in s = B, conditional on defaulting
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at t = 2 solves:

max
XB ,I1B

L =(1− θ)R(I1B, E
a
B) + (1− ψ)TB + µ(I0 − I1B)− d0 − C(Xs, I1B)

+ κIBI1B + κIB[I0 − I1B] + κc1B[µ(I0 − I1B)− d0 − C(Xs, I1B)],

The FOCs wrt XB, I1B is:

(1 + κc1B)
∂C(XB, I1B)

∂XB

= 0 (IA.6)

(1− θ)ρ+ κIB − κIB + (1 + κc1B)

(
−µ− ∂C(XB, I1B)

∂I1B

)
= 0 (IA.7)

Thus, in s = B the borrower chooses X∗d
B = 0. The borrower chooses minimum liq-

uidations needed to repay the t = 0 short term debt, µ(I0 − I∗d1B) = d0, whenever

(1 − θ)ρ − µ > 0. If (1 − θ)ρ − µ < 0 the borrower liquidates all assets at t = 1

and consumes c1 = µI0 − d0, leaving nothing to the long-term creditors at t = 2. Con-

sequently, risky long-term debt results in a severe debt overhang problem that induces

borrowers to not invest in abatement at all.

Next suppose the borrower does not default at t = 2 in a given state s. In this case,

the choice of abatement and investment at t = 1 follow from

max
Xs,I1s,d1s

L = [µ(I0 − I1s)− d0 − C(Xs, I1s) +R(I1s, E
a
s )− τsE(Xs, I1s) + Ts − dLT ]

λs

[
R̃(I1s, E

a
s )− τkE(Xs, I1s) + ψTs − d1s − rdLT

]
+ κIsI1s + κIs[I0 − I1s]

κc1s [d1s + µ(I0 − I1s)− C(Xs, I1s)− d0] ,

(IA.8)

The FOCs wrt d1s pins down λs = κc1s, and those wrt Xs, I1s are:

(1 + λs)
∂C(Xs, I1s)

∂Xs

− (1 + λs)τ
∂E(Xs, I1s)

∂Xs

= 0 (IA.9)

ρ(1 + θλs)− (1 + λs)

[
µ+

∂C(Xs, I1s)

∂I1s
+ τ

∂E(Xs, I1s)

∂I1s

]
+ κIs − κIs = 0 (IA.10)

With the complementary slackness constraint:

R̃(I1s, E
a
s )− τkE(Xs, I1s) + ψTs + µ(I0 − I1s)− C(Xs, I1s)− rdLT − d0 = 0 (IA.11)
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Thus, the choice of abatement and liquidations corresponds to the one in the benchmark

where d0 is substituted by d0 + rdLT . Let these choices be denoted by X∗
s and I∗1s

Comparing the payoffs earned in the case of default and non-default in s = B, we can

find the level of long-term debt at which the debt is indeed risky. If (1 − θ)ρ > µ, this

level is given by:

d0 + rdLT >

ρI∗1B − (1− θ)ρI∗d1B − θγpBE
a
B + ψTB + µ(I0 − I∗1B)− C(X∗

B, I
∗
1B)− τBE(X

∗
B, I

∗
1B) = d̂LT

If (1− θ)ρ < µ this level is given by:

rdLT > ρI∗1B − γpBE
a
B + TB − µI∗1B − C(X∗

B, I
∗
1B)− τBE(X

∗
B, I

∗
1B) = d̂LT

Focusing on the case when (1 − θ)ρ > µ, the most that the lender can recover from

the borrower in the case of default is θR(I∗d1B, E
a
B, γ

p
B) + ψTB − τBE(X

∗d
B , I

∗d
1B). Thus, the

lender’s participation constraint requires that:

dLT ≤ qrdLT + (1− q)[θR(I∗d1B, E
a
B) + ψTB − τBE(X

∗d
B , I

∗d
1B)]

If (1− θ)ρ < µ long-term lender’s participation constraint is:

dLT ≤ qrdLT

In both cases, the participation constraint of the lender implies that the risk of default

and the inefficient abatement and/or liquidation choices at t = 1 must be compensated

with a sufficiently high interest rate paid to the lender.

Risk sharing vs debt overhang The potential gains from risk-sharing permitted by

the risky long-term debt come at the expense of exposing borrowers to a debt overhang

problem. As shown above, in the bad state borrowers abscond with resources at t = 2,

and therefore no longer have incentives to maximize the project’s value. As a result,

they choose not to engage in any abatement, as the emissions tax bill is paid out of the

pledgeable income and thus does not affect borrowers’ payoff under default.

In equilibrium investors price in the cost of debt-overhang, demanding a high com-
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pensation for holding the long-term debt. Thus, any gains from insurance due to using

risky long-term debt come at a premium relative to climate-linked securities or external

equity.

IA.1.4 Socially Responsible Investing

We assume that each borrower matches with 1 investor and all investors are socially

responsible, with their utility given by:

U i = ci0 + ci1s + ci2s − γusE
a
s − (ω0Idb0 + ω1Idb1)E(X

b
s , I

b
1s) (IA.12)

Where Idb0 and Idb1 are indicator functions taking the value of 1 if the investor lends to

the borrower at t = 0 and t = 1 respectively. Thus, investors’ break-even conditions for

lending to borrower b are given by:

db0 =r0d
b
0 − ω0E[E(Xb, Ib1)]

db1 =r1d
b
1 − ω1E(X

b
s , I1s)

In the presence of socially responsible investors, borrower’s constraints become:

cb0 = A0 − (I − d0) ≥ 0,

cb1s = (I0 − I1s)µ+ d1s − d0 − ωE[E(X, I1)]− C(Xs, I1s) ≥ 0,

cb2s = R(I1s, E
a
s )− τsE(Xs, I1s)− d1s − ωE(Xb

s , I1s) + Ts ≥ 0,

d1s + ωE(Xb
s , I1s) ≤ R̃(I1s, E

a
s )− τsE(Xs, I1s) + ψTs,

I1s ∈ [0, I0].
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The Lagrangian of the problem is thus:

max
Xs,I1s,d1s,d0

L = u(A0 − I0 + d0)

+
∑

k∈{G,B}

qk [µ(I0 − I1k) + d1k − d0 − ωE[E(X, I1)]− C(Xk, I1k)]

+
∑

k∈{G,B}

qk [R(I1k, E
a
k)− τkE(Xk, I1k) + Tk − d1k − ωE(Xk, I1k)]

+
∑

k∈{G,B}

qkλk

[
R̃(I1k, E

a
k)− τkE(Xk, I1k) + ψTk − d1k − ωE(Xk, I1k)

]
+ κIkI1k

+
∑

k∈{G,B}

qk {κc1k [d1k + µ(I0 − I1k)− d0 − ωE[E(X, I1)]− C(Xk, I1k)] + κIk[I0 − I1k]} ,

FOCs wrt d1s, Xs, I1s, d0:

−λs + κc1s =0

−(1 + λs)
∂C(Xs, I1s)

∂Xs

− (1 + λs)(τs + ω)
∂E(Xs, I1s)

∂Xs

=0

ρ(1 + θλs)− (1 + λs)[µ+
∂C(Xs, I1s)

∂I1s
+ (τs + ω)

∂E(Xs, I1s)

∂I1s
] =0

u′(cb0)− 1−
∑

k∈{G,B}

qkλs =0

IA.2 Implementation of the Capital Mandate

through Taxes on Leverage

This appendix shows that a capital mandate ē derived in Section 5 can alternatively

be implemented through a tax τd on t = 0 debt (or a subsidy if τd < 0). Given that

capital requirements in the Basel Accord apply to financial institutions, leverage taxes

and subsidies may be a more likely tool seen in the real world if borrowers in the model

are interpreted as non-financial firms (such as manufacturing firms). Tax proceeds are

fully rebated to borrowers via a lump-sum rebate T b0 .

With a leverage tax τd, the t = 0 budget constraint is given by I0 = e+d0(1−τd)+T b0 ,

which can be re-arranged to d0 =
I0−e−T b

0

(1−τd)
. With this budget constraint, the borrower’s

8



problem (18) is now given by the following Lagrangian:

max
X,I1,d1,e

L = u(A0 − e)

+
∑

k∈{G,B}

qk

[
µ(I0 − I1k)−

I0 − e− T b0
1− τd

− C(Xk, I1k) +R(I1k, E
a
k)− τkE(Xk, I1k) + Tk

]
+

∑
k∈{G,B}

qk

{
λk

[
R̃(I1k, E

a
k)− τkE(Xk, I1k) + ψTk − d1k

]
+ κIkI1k + κIk[I0 − I1k]

}
+

∑
k∈{G,B}

qkκc1k

[
d1k + µ(I0 − I1k)−

I0 − e− T b0
1− τd

− C(Xk, I1k)

]
,

(IA.13)

The first order conditions with respect to Xs and I1s are equivalent to those in the main

text and given by (6) and (7), respectively. By contrast, the first order condition with

respect to equity e is different from the main text Eq. (9), and is now given by

u′(A0 − e) =
1 + (1− q)λG + qλB

1− τd
.

From this equation it is clear that a higher tax on debt induces borrowers to choose a

higher level of e, i.e., lower leverage. By fully rebating the taxes, such that T b0 = τdd0, a

regulator can ensure that the tax does not affect any constraints. Consequently, a equity

mandate ē∗ can be implemented by setting a leverage tax τ ∗d such that

u′(A0 − ē∗) =
1 + (1− q)λG + qλB

1− τ ∗d
.

IA.3 Interpretation of Borrowers as Financial

Institutions

This appendix derives a version of the model in which borrowers are banks that make

loans to non-financial firms. A continuum of firms run by risk-neutral owners have access

to the same investment project as described in Section 2. Firms have no own funds and

must obtain a loan from a bank. Banks have the same preferences and the same limited

endowment A0 as borrowers in the baseline model. Banks can also raise financing from

investors as in the baseline model. In contrast, each firm is matched with a bank and can

only obtain financing through a loan from its bank, i.e., firms cannot obtain funding from
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other investors or banks. There is no friction between a firm and its bank, but banks are

constrained by the same financial constraint (4) as borrowers in the baseline model. That

is, banks can fully seize the firm’s assets at t = 2 but can only pledge R̃(I1, E
a) of the

seized asset returns to outside investors. In this version of the model, “borrowers” are

split into a financial and a real sector, where banks finance loans to bank-dependent firms

through bank equity and outside financing, and firms use loans to finance real investment

and abatement. We assume that firm owners are risk-neutral and bank owners have the

same quasi-linear utility as borrowers in the baseline model. For simplicity, we focus on

the case ψ = 0.

Firm problem. Banks make a take-it-or-leave-it offer to firms, offering a loan lt at

t = 0 and t = 1, and repayment D due at t = 2. Firms can decide to accept or reject the

loan but conditional on accepting take lt and D as given. When rejecting the loan, the

outside option for firms is not to finance the project.

Firms have no own funds, so that I0 = l0. At t = 1 firms can liquidate some initial

investment to generate a liquidation value µ(I0 − I1s), and invest in abatement Xs at a

cost C(Xs, I1s). Firm owner’s consumption is given by

cf0 = l0 − I0

cf1s = µ(I0 − I1s)− C(Xs, I1s) + l1s

cf2s = R(I1s, E
a
s , γ

p
s )− τE(Xs, I1s) + Ts −D

The firm’s problem is to choose I1s and Xs so as to maximize cf0 + cf1 + cf2 subject

to I0 ≥ I1s ≥ 0 and non-negativity constraints on consumption. This problem can be

written as follows:

max
Xs,I1s,l1s,l0

L = l0 − I0

+
∑

k∈{G,B}

qk [R(I1k, E
a
k)− τkE(Xk, I1k) + Tk −D + l1k + µ(I0 − I1k)− C(Xk, I1k)]

+ κcf0
(l0 − I0) +

∑
k∈{G,B}

qkκcf1k
[µ(I0 − I1k)− C(Xk, I1k) + l1k]

+
∑

k∈{G,B}

qk

[
κcf2k

[R(I1k, E
a
k)− τkE(Xk, I1k) + Tk −D] + κIkI1k + κIk(I0 − I1k)

]
.

(IA.14)
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The first order conditions with respect to I1s and Xs are, respectively,

(1 + κcf2s
)

(
ρ− τ

∂E(Xs, I1s)

∂I1s

)
− (1 + κcf1s

)

(
µ+

∂C(Xs, I1s)

∂I1s

)
+ κIs − κIs = 0,

(IA.15)

− τs
∂E(Xs, I1s)

∂Xs

− ∂C(Xs, I1s)

∂Xs

= 0. (IA.16)

The first order condition with respect to Xs is the same as in the baseline model, cf.

Eq. (6). By Assumption 2 (liquidations are inefficient) and the fact that κcf2s
≥ 0, it also

follows that (1 + κcf2s
)
(
ρ− τ ∂E(Xs,I1s)

∂I1s

)
−
(
µ+ ∂C(Xs,I1s)

∂I1s

)
> 0. This implies that either

κIs > 0 or κcf1
> 0, so that I1s is either I1s = I0 or is pinned down by cf1 = 0, which

defines I1s(l1s).

Bank problem. The bank chooses l0, l1s, D, d1s and d0, subject to the financial con-

straint (4).

c0 = A− e

c1 = d1s − d0 − l1s

c2 = D − d1s

Firm participation requires that cft ≥ 0. Banks optimally choose D, l1s and l0 such

that the participation constraints bind, which implies l0 = I0 = e + d0, l1s = −µ(I0 −

I1s) + C(Xs, I1s), and D = R(I1s, E
a
s )− τE(Xs, I1s) + Ts.

If the firm’s investment is pinned down by I1s(l1s) (defined by cf1 = 0), the bank’s
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problem can be expressed as:

max
l1s,d1s,e

L = u(A− e)− I0 + e

+
∑

k∈{G,B}

qk [µ(I0 − I1k(l1k))− C(Xk, I1k(l1k)) +R(I1k(l1k), E
a
k)− τkE(Xk, I1k(l1k)) + Tk]

+
∑

k∈{G,B}

qkλk

(
R̃(I1k(l1k), E

a
k)− τkE(Xk, I1k(l1k))− d1k

)
+ κc0(A− e)

+
∑

k∈{G,B}

qk [κc1k (d1k − I0 + e+ µ(I0 − I1k(l1k))− C(Xk, I1k(l1k)))]

+
∑

k∈{G,B}

qk [κc2k (R(I1k(l1k), E
a
k)− τkE(Xk, I1k(l1k)) + T − d1k)] .

(IA.17)

The first order conditions read:

u′(A− e) = 1− κc0 + (1− q)κc1G + qκc1B (IA.18)

κc1s − κc2s − λs = 0 (IA.19)

− (1 + κc1s)

(
µ+

∂C

∂I1s

)
+ (1 + κc2s)

(
∂R

∂I1s
− τs

∂E

∂I1s

)
+ λs

(
∂R̃

∂I1s
− τs

∂E

∂I1s

)
= 0

(IA.20)

Due to the assumptions on u′(c0), it is never optimal to have A−e = 0, so κc0 = 0. Because

d1s ≤ R̃(I1s, E
a
s ) − τsE(Xs, I1s), c2s > 0 and κc2s = 0. It follows that λs = κc1s > 0, so

the FOCs simplify to:

u′(c0) = 1 + (1− qB)λG + qBλB (IA.21)

λs = −r(τs, Xs, I1s)

r̃(τs, Xs, I1s)
(IA.22)

which are the same as the conditions as (7’) and (9) in the baseline model. Since also

Eq. (IA.16) is equivalent to Eq. (6), in this case all first order conditions and therefore

the equilibrium allocations are the same as in the baseline model.
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