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1 Introduction

Over the last decade, two parallel lines of work have emerged in financial economics.

First, in corporate finance, a strand starting with Gorbenko and Strebulaev (2010) has

studied the differential impact of short-term (temporary) and long-term (permanent)

shocks on firm choices, on the grounds that neglecting the heterogeneous nature of shocks

might over-simplify or even distort our understanding of corporate decision making. In-

deed, whereas temporary shocks are immaterial for future prospects, they lead firms to

value financial flexibility and trigger conservative corporate policies that allows them to

weather unexpected shocks. By contrast, permanent shocks have a long-lasting effect

and, thus, impact both current and future cash flows. Empirical research on the topic

has indeed demonstrated that accounting for both types of shocks is crucial to ratio-

nalize observed empirical patterns (see Chang, Dasgupta, Wong, and Yao (2014) and

Gryglewicz, Mancini, Morellec, Schroth, and Valta (2022)).

Second, in parallel asset pricing research, the pioneering work by van Binsbergen,

Brandt, and Koijen (2012) has questioned the view that equity market mostly remunerate

the long-term (see, e.g. Campbell and Cochrane, 1999; Bansal and Yaron, 2004) and has

shown that short-term risk premia are sizable. Despite the debate and initial disagreement

on the sign of the unconditional slope of the term structure of equity risk premia, asset

pricing researchers now consistently agree that: (1) the short and long term do not

contribute equally to the market risk premium, and (2) their contribution is time-varying,

i.e., either the short or the long term can contribute relatively more at different points

of the business cycle.1 Further research in this strand highlighted the need to account

for multiple sources of risk to reproduce the dynamics of the term structure of equity,

whereby long-term (permanent) and short-term (transitory) shocks have been shown to

have a pivotal impact in determining the compensation required by equity investors across

1As we explain in Section 2, the disagreement over the unconditional slope of the term structure or
equity risk premia—i.e., on whether long or the short term contribute the most—largely stem from the
alternation of the slope over the business cycle.
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the horizon.2

While the second strand has consequential implications for the first one, to date there

is no work that makes these two parallel lines of work meet. This paper seeks to fill

this gap. To this end, we build a dynamic model for a firm operating in an economy

with long- and short-term shocks. Long-term shocks have a persistent effect on firm

size—they capture, e.g., permanent changes in aggregate output, consumers’ tastes, or

technology—and affect the firm’s present and future cash flows. In turn, short-term

shocks—representing, e.g., transitory demand fluctuations—have a temporary effect on

cash flows but expose the firm to operating losses. To cover these losses, the firm can use

retained earnings or external financing, which yet entails issuance costs. The key novelty

of our model is the focus on the relative prices of short- versus long-term shocks—to which

we refer as the term structure of risk prices—and its impact on corporate decisions. The

term structure of risk prices is downward-sloping (respectively, upward-sloping) if long-

term shocks have a lower (higher) market price than short-term ones.3 As the exposure

to and the pricing of aggregate short- and long-term shocks shape the firm cash flow

risk and the compensation required by firm investors, investigating their impact on real,

financial, and precautionary policies is of obvious interest.

To single out the effect of the term structure of risk prices on corporate policies, we

start by analyzing the case in which the firm is symmetrically exposed to short- and long-

term aggregate shocks. We show that the term structure affects both the firm’s real and

financial policies which, in a dynamic world with financing frictions, are interdependent.4

Specifically, when the term structure of risk prices is downward-sloping, the firm should

extend the horizon of corporate policies compared to the flat case—not only by investing

2See, e.g., Gormsen (2021), Croce, Lettau, and Ludvigson (2015), Marfè (2017), or Breugem, Colon-
nello, Marfè, and Zucchi (2024).

3Embracing the empirical finding that the slope changes sign over time, our paper studies the impact
of both an upward- and downward-sloping term structure.

4Conversely, as absent financing frictions financing is irrelevant, the term structure of risk prices has
solely an impact on firm’s investment—namely, a downward-sloping (upward-sloping) term structure
encourages firms to increase (decrease) their investment rate compared to the flat case.
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more, but also by enhancing long-term financial resilience through precautionary policies.

Namely, the firm should increase the size of precautionary cash reserves, reduce payouts,

be more likely to tap external financing than to shut down operations when running out

of funds, and increase the size of equity issuances. Conversely, when the term structure

of risk prices is upward-sloping, the firm should shorten the horizon of corporate policies

compared to the flat case. Not only the firm should invest less, but also adopt financing

policies that are more nearsighted—e.g., it should keep less cash, pay out more, and

reduce the likelihood and magnitude of refinancing events.

We then allow the firm to be asymmetrically exposed to these shocks. In this case,

a “level” effect adds to the slope effect discussed so far. If the firm is more exposed to

long-term shocks, the exposure-weighted level of the term structure is greater (smaller)

if upward-sloping (downward-sloping).5 The level effect compounds the slope effect and,

thus, makes the results derived under the assumption of symmetric risk exposure quan-

titatively stronger—i.e., a decreasing (respectively, increasing) term structure triggers a

sharper lengthening (shortening) in corporate horizon. If, instead, a firm is relatively more

exposed to short-term shocks, it can exhibit the opposite pattern as the level and slope

stir countervailing strengths. First, a decreasing slope spurs a lengthening in corporate

horizon, as shown so far. Second, the firm’s higher exposure to short-term shocks (which

have the largest market price) increases the exposure-weighted level of the term structure

and acts as an offsetting strength. This offsetting strength is shown to be more likely

to prevail if the firm’s profitability is low or if the firm’s assets depreciate more quickly.

That is, we provide practical guidance for empirical work, which should exploit differen-

tial responses in the cross-section of firms based on their exposure to aggregate risks and,

for firms that are more exposed to short-term shocks, based on firm characteristics.

Whereas most of our analysis investigates how market-wide risk prices affect firm

policies, we also study how they shape firm-level risk premia. In our model, the risk

5We refer to “exposure-weighted” as the level of the term structure weighted by the firm specific
exposure to short-term and long-term shocks.
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premium has two components compensating for the exposure to long- and short-term

shocks, with the long-term (short-term) component being the largest if the term structure

of risk prices is increasing (respectively, decreasing). We show that the term structure of

risk prices shapes the impact of financing frictions on risk premia, which helps rationalize

the available mixed evidence (see Lamont, Polk, and Saá-Requejo, 2001; Whited and Wu,

2006). In fact, whereas the long-term component is always smaller in the presence of

financing frictions compared to the frictionless case,6 the short-term component can be

larger or smaller depending on the firm’s cash ratio. Thus, the sum of the two components

can be higher or lower in the presence of financing friction depending on the firm’s cash

ratio and the slope of the term structure—specifically, financing frictions inflate a firm

risk premium if the term structure is decreasing and the firm’s financial position is weak.

Two applications showcase the empirical relevance of our results. First, as corporate

horizon is naturally related to cash flow duration, our model can reproduce the negative

relation between duration and expected returns observed in the data. Furthermore, our

model supports the view that duration spans other pricing factors such as investment,

payout, profitability, and value (see Chen and Li, 2018; Gonçalves, 2021a; Gormsen and

Lazarus, 2023). Given that, as we show, duration is endogenous and largely shaped by

the firm’s exposure to short- and long-term risks and their pricing, revisiting the role of

duration conditional on the term structure of risk prices would be a fruitful avenue of

research.

Second, we illustrate that the distortions associated with ignoring the slope (i.e., as-

suming it flat) are quantitatively notable. Ignoring a downward slope leads firms to put

too much emphasis on short-term payouts at the cost of harming growth and financial re-

silience. I.e., firms underinvest, pursue an overly-generous payout policy, hold inadequate

cash reserves, and raise too little external financing. Conversely, ignoring an upward slope

leads to overweight the long-term—leading to delayed payouts and excessive investment,

6Because financing frictions provide firms with incentives to keep safe assets such as cash, the com-
position of cash and (risky) productive assets reduces the required compensation for long-term risk
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cash accumulation, and equity issuances. By exploiting variations in firm value as the

term structure slope varies over time, our paper proposes a roadmap for empirical tests

to assess whether firms indeed account (or not) for the term structure of risk prices in

ways consistent with our theory.7 Given the accumulating evidence over the past decades

highlighting that corporate managers poorly calculate financial discount or update them

in response to their time variation (among others, see e.g., Jagannathan, Matsa, Meier,

and Tarhan, 2016; Gormsen and Huber, 2023, 2024), our model then highlights a new

form of inefficiency that stems from failing to account for the differential pricing of short-

versus long-term shocks.

Finally, we account for the dynamic nature of the term structure of risk prices. As

empirically documented, we assume that the level of risk prices is countercyclical and

study the effect of time variation in the slope. When accounting for a procyclical slope,

we show that time variation in level and in slope have countervailing effects on the firm’s

optimal investment. In fact, firms have greater (lower) incentives to invest when risk prices

are relatively low (high) in expansion (recession), but the increasing slope moderates this

effect. I.e., a procyclical slope mildens the impact of business-cycle fluctuations in the

level of risk prices on investment, then enabling firms to maintain a steadier growth rate.

Conversely, if the slope is countercyclical, time variation in level and in slope have the

same directional effect on the firm’s optimal investment, then making a firm’s growth

rate more volatile over the business cycle. By analyzing both cases, we remain agnostic

regarding the empirical discussion concerning the slope cyclicality. Yet, as we show that

the procyclicality and countercyclicality have very different implications for optimal firm

policies, our analysis urges the empirical asset pricing literature to resolve this debate.

Related literature Our paper contributes to the corporate finance literature factor-

ing the differential impact of temporary and permanent shocks into firm choices. As

empirically shown by Chang et al. (2014), Byun, Polkovnichenko, and Rebello (2019),

7We discuss the roadmap to empirical testing in Section 5.4.
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and Gryglewicz et al. (2022), firms’ operating cash flows are subject to both types of

shocks, and the exposure to these shocks importantly shapes firm’s policies. Pioneering

this literature, the theoretical contribution by Gorbenko and Strebulaev (2010) investi-

gates leverage dynamics by modeling temporary Poisson shocks on top of Leland-type

permanent shocks. Décamps, Gryglewicz, Morellec, and Villeneuve (2017) demonstrate

that combining permanent and transitory Brownian shocks helps explain corporate be-

havior and produces several novel implications about the level of cash savings and optimal

financing policies. Our paper advances this literature in two directions. First, it inves-

tigates the interaction between financial policies and continuous investment.8 Second, it

specifically focuses on the impact of the differential market pricing of transitory versus

permanent risks, which has first-order implications on the horizon of corporate policies.

The paper then also relates to the literature on corporate horizon. Early contributions

(Stein, 1988, 1989; Aghion and Stein, 2008) emphasize that stock market pressure leads

managers to boost short-term earnings at the expense of long-term performance.9 More

recent studies, in turn, have focused on identifying the conditions under which short-

termism can be efficient through the lens of agency conflicts, see Hackbarth, Rivera,

and Wong (2022) and Gryglewicz, Mayer, and Morellec (2020). Our paper advances the

existing literature in at least two dimensions. First, instead of focusing on managerial

incentives/beliefs or stock market pressure due to quarterly reporting as drivers of corpo-

rate horizon,10 our paper provides an explanation based on the pricing of risk. Second,

instead of just focusing on investment, we also investigate financial policies, showing that

equity issuances, cash retention, payouts, and liquidation decisions respond to the slope

of the term structure of risk prices, which tilts the focus between long-term financial

8Taking a complementary perspective, Lee and Rivera (2021) also incorporate investment although
they investigate the impact of ambiguity with respect to permanent and transitory shocks.

9Asker, Farre-Mensa, and Ljungqvist (2015), Edmans, Fang, and Lewellen (2017), and Terry, Whited,
and Zakolyukina (2020) investigate the consequences of stock market pressure on corporate investment.

10See, e.g., Hackbarth, Rivera, and Wong (2022), Gryglewicz, Mayer, and Morellec (2020), Wong and
Zhao (2022) for theoretical perspective, as well as Asker, Farre-Mensa, and Ljungqvist (2015) or Ladika
and Sautner (2019) for empirical contributions.
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resilience through precautionary policies and fallback financing policies that may harm

long-term profitability (such as asset sales).

Our focus on the differential pricing of different types of risks is motivated by recent

advancements in asset pricing on the pricing and timing of risk (see, e.g., Bansal, Dittmar,

and Lundblad, 2005; Lettau and Wachter, 2007; Hansen, Heaton, and Li, 2008; Da, 2009;

van Binsbergen, Brandt, and Koijen, 2012). Indeed, recent works stress the need to ac-

count for multiple sources of risk—featuring heterogeneous market prices—to rationalize

the dynamics of the term structure of equity risk premia.11 Whereas this line of research

has consequential implications for the discount rates used by firms, to the best of our

knowledge there is no corporate finance work that explicitly studies the ensuing impact

on firm’s financial and investment policies.

More generally, our paper relates to the literature that analyzes how aggregate dis-

count rates affect corporate decisions and outcomes (see, e.g., the presidential address by

Cochrane, 2011). Our paper adds a novel perspective and shows that ignoring the horizon

dimension of market risk prices leads to considerable distortions in corporate policies. As

an important application of this line of research, Nordhaus (2013) emphasizes that the

horizon dimension is key to properly evaluate green investments, suggesting that “ a full

appreciation of the economics of climate change cannot proceed without dealing with

discounting” to properly compare present and future costs and benefits. Tackling this

question, Giglio, Maggiori, Rao, Stroebel, and Weber (2021) tap the housing market to

gather information about the appropriate discount rate to value long-term investments

in climate change abatement, to account for their maturity and risk properties.

The paper is organized as follows. Section 2 presents some motivating facts. Section

3 presents our model. Section 4 derives the model solution, and Section 5 analyzes its

implications. Section 6 studies the impact of time variation in the term structure of risk

prices. Section 7 concludes. Technical developments and proofs are in the Appendix.

11See, e.g., Gormsen (2021), Croce, Lettau, and Ludvigson (2015), and Breugem et al. (2024).
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2 Motivating facts

Below we describe the facts that motivate our model, coming from recent advancements

in the asset pricing and corporate finance literature.

Fact 1: The long and short term do not contribute equally to the mar-

ket risk premium.

This fact is long established in the literature. Leading asset pricing models such as

Campbell and Cochrane (1999) and Bansal and Yaron (2004) suggest that equity markets

mostly remunerate the long term—then implying that the unconditional term structure of

equity risk premia is upward-sloping. In contrast, the literature on the term structure of

equity initiated by van Binsbergen, Brandt, and Koijen (2012) illustrates that short-term

claims to equity indexes feature a sizable risk premium and that the term structure is

downward-sloping. Thus, the literature universally agrees that different horizons do not

contribute equally to the equity risk premium. By informing about discount rates of risky

cash flows at different horizons, this should clearly matter for corporate decision making.

However, to the best of our knowledge, there is no corporate finance paper investigating

how the differential pricing associated with such risks impacts corporate policies.

Fact 2: The relative contribution of the long and short term to the

market risk premium is time-varying.

The aforementioned disagreement regarding which horizon contributes the most to the

equity risk premium—equivalently, regarding the sign of the unconditional slope of the

term structure of equity risk premia—has been largely caused by its time variation. That

is, short samples may lead to biased estimates of the unconditional slope by not properly

capturing the alternation of good and bad economic conditions and the associated short-

and long-term premia. Indeed, the empirical asset pricing literature agrees that the slope

of the term structure is time-varying.12 Thus, it is important to study the impact of

12Namely, the term structure of equity yields has been shown to be increasing in expansions and
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both an upward- and downward-sloping term structure on corporate policies as well as

its dynamics.

Fact 3: Long-term (persistent) and short-term (transitory) shocks have

a prime impact in determining the compensation required by equity in-

vestors across the horizon.

To reproduce the dynamics of the term structure of equity, the literature has high-

lighted the need to account for multiple sources of risk (see, e.g., Gormsen, 2021). Two

obvious candidates are long-term (persistent) and short-term (transitory) shocks, see,

e.g., Croce, Lettau, and Ludvigson (2015), Marfè (2017), and Breugem et al. (2024). To

see this, consider the following stylized setup.

Consider an economy in which there are two priced shocks: a short-term (transitory)

risk with market price ηS and volatility σS and a long-term (permanent) risk with market

price ηL and volatility σL. The risk premium on the market equity claim with maturity

τ (denoted by RP (τ)) is the sum of two terms:

RP (τ) = RPS(τ) +RPL(τ),

where RPS(τ) and RPL(τ) represent the remuneration for systematic short-term and long-

term shocks, respectively. In turn, the slope of the term structure of equity compensation:

Slope(τ) = RP ′(τ) = RP ′
S(τ) +RP ′

L(τ). (1)

As shown in Appendix A.1, the short- and long-term components of the risk premium

are given by:

RPS(τ) = ηSσSfS(τ), and RPL(τ) = ηLσLfL(τ),

decreasing in recessions (see, e.g., Bansal, Miller, Song, and Yaron, 2021). At the same time, as shown
by Gormsen (2021) and Breugem et al. (2024), the term structure of equity risk premia has been shown
to be decreasing in expansions and increasing in recessions.
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where fi(τ), with i = S, L, is a function of horizon τ . As we show in Appendix A.1,

if the payout of the aggregate equity index is driven by a transitory (short-term) and a

permanent (long-term) component—then reflecting the aggregate risks in the economy—

then we have that f ′
S(τ) < 0 and f ′

L(τ) > 0. The reason is the following. Long-term,

persistent shocks accumulate over time and, thus, introduce a stochastic trend. As a

result, long-term shocks make the equity risk premium increasing with the horizon. At the

same time, short-term, temporary shocks produce stationary fluctuations which dissipate

as time goes by. As a result, short-term shocks induce a downward-sloping strength. That

is, RP ′
S(τ) < 0 and RP ′

L(τ) > 0. The relative magnitude of the risk prices associated

with short-term and long-term shocks is then key to pin down the slope of the term

structure of equity compensation. Notably, the relative magnitude of the risk prices of

short- and long-term shocks is a first order determinant of the slope of the risk premium

term structure.

Fact 4: Long-term (persistent) and short-term (transitory) shocks have

a pivotal impact on corporate policies.

Starting with Gorbenko and Strebulaev (2010), the corporate finance literature has

growingly acknowledged the importance of accounting for the firm’s exposure to tempo-

rary and permanent shocks when analyzing corporate decision making. Supporting this

view, Gryglewicz et al. (2022) show that the bulk of firm’s operating cash flows are subject

to both permanent and transitory shocks, which have distinct implications for corporate

liquidity and financing choices. Yet, this literature has so far abstracted from the prices

associated to such risks. This is surprising, as the market prices and the firm’s exposure

to short-term and long-term risks are essential to correctly shape the intertemporal trade-

offs at the heart of optimal investment, financing, and cash management decisions. The

model presented in the next section seeks to fill this gap. We focus not only on investment

but also on financing and cash management, as cash flow risks determines these decisions

when firms are subject to financing frictions.
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3 The model

The economic environment Time is continuous, and the horizon is infinite. There

is a constant risk-free rate denoted by r. We consider an economy characterized by two

sources of aggregate, undiversifiable risk: long-term shocks and short-term shocks. Long-

term shocks affect the economy permanently—i.e., they can be interpreted as persistent

changes in the composition of aggregate output, technology, or consumers’ tastes—and

are driven by a standard Brownian motion denoted by dW̃t under the physical probabil-

ity measure. Short-term shocks affect the economy only temporarily—i.e., they can be

interpreted as shocks capturing transitory risks in the economy, like seasonal fluctuations

in demand, political uncertainty, or geopolitical tensions—and are driven by a standard

Brownian motion denoted by dB̃t under the physical measure. We assume that the two

shocks are independent. Investors are risk-averse, so we need to distinguish between

physical and risk-neutral measures.

The stochastic discount factor reflects the two sources of aggregate risks in the econ-

omy, which are therefore priced. The dynamics of the stochastic discount factor, denoted

by ξt, follow a geometric Brownian motion:13

dξt
ξt

= −rdt− ηLdW̃t − ηSdB̃t. (2)

The parameters ηL and ηS are the prices of risk associated with long- and short-term

aggregate risks, respectively—i.e., they describe the market’s remuneration for undiversi-

fiable risks that have long- or short-term impact. Motivated by Fact 3 in Section 2 (and

illustrated in Appendix A.1), we refer to the relative magnitude of ηL versus ηS by defin-

ing the slope of the term structure of risk prices. Specifically, we refer to the case in which

the market price of long-term shocks is larger than the market price of short-term shocks

(i.e., ηL > ηS) as characterized by an increasing term structure of risk prices. Conversely,

13The stochastic discount factor can be generated by a consumption-based asset pricing model. We
follow Bolton, Chen, and Wang (2013) and take it as given, to focus on corporate policies.
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we refer to the case in which the market price of short-term shocks is higher than that of

long-term shocks (i.e., ηL < ηS) as characterized by a decreasing term structure of risk

prices. Finally, we refer to the case in which short-term and long-term shocks have the

same market price (i.e., ηL = ηS) as having a flat term structure.

The firm We consider the optimization problem of a firm operating in this economy.

The firm is exposed to both of the economy’s aggregate shocks. To model the firm’s

exposure to both types of shock, we assume that cash flows satisfy:

dXt = AtdYt. (3)

In this equation, At represents the firm’s assets. Shocks to At change the future prospects

of the firm and influence cash flows persistently. We assume that these shocks are cor-

related with the long-term source of aggregate risk. In turn, shocks associated with dYt

are short-lived and, thus, do not affect the firm’s future prospects. We assume that these

shocks are correlated with the short-term source of aggregate risk.

Specifically, our cash flow specification implies that shocks to the firm assets At affect

the firm’s present and future cash flows. For instance, a positive shock of this type—e.g.,

an improvement in the technology utilized by the firm—expands the size of the firm’s

operations, and can make the firm wealthier both in the short and in the long term. We

describe the firm’s long-term shocks through a standard Brownian motion Ŵt under the

physical measure, which is correlated with the aggregate permanent shock W̃t by a factor

ρA ≥ 0. Namely, the dynamics of At satisfy:

dAt =(µAt + Lt)dt+ σAAtdŴt (4)

=(µ+ lt)Atdt+ σAAt

(
ρAdW̃t +

√
1− ρ2AdW̃

A
t

)

where the standard Brownian motion W̃A
t is independent of W̃t—i.e., it represents the
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idiosyncratic portion of the firm’s long-term shock. In this equation, µ and σA > 0 are

constant parameters. We do not impose restrictions on the sign of the parameter µ—if

negative, it represents the depreciation rate of the firm’s capital. Furthermore, lt = Lt/At

represents the firm’s investment rate, which expands firm size and is set endogenously.

We assume that the price of assets is normalized to one, and that investment also entails

a quadratic adjustment cost given by:

G(L,A) = g(l)A =
κl2

2
A, (5)

where κ is a positive constant.

In turn, transitory shocks do not affect the firm’s long-term prospects. Namely, the

transitory component of cash flows dYt follows an arithmetic Brownian motion with dy-

namics:

dYt = αdt+ σY dB̂t = αdt+ σY

(
ρY dB̃t +

√
1− ρ2Y dB̃

Y
t

)
. (6)

In this equation, α > 0 and σY > 0 are positive constants denoting the associated drift

and volatility, respectively. Moreover, the firm’s short-term shocks, denoted by dB̂t under

the physical measure, are correlated with the aggregate shock dB̃t by a factor ρY ≥ 0. In

the above equation, B̃Y
t is independent of B̃t and, thus, it represents the portion of the

cash flow shock that is not priced. We assume that the Brownian motions Ŵt and B̂t are

orthogonal. In Appendix A.5, we show that allowing the firm to engage in short-term

investment affecting the cash flow drift α does not change the main predictions of the

model on the role of the term structure of risk prices on the horizon of corporate policies.

In this extended setup, we show that the firm optimally tilts its focus towards long- or

short-term investment in ways consistent with an extension or contraction of the firm’s

optimal horizon, as predicted by our baseline model with just one type of investment.

Our definition of cash flows and the way permanent and transitory shocks affect the
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firm’s prospects are similar to Décamps et al. (2017), Gryglewicz, Mayer, and Morellec

(2020), and Hackbarth, Rivera, and Wong (2022).14 As in these works, we want to allow

for negative cash flows, consistent with real-world observation. To see how shocks to

At have a long-term impact, consider a Modigliani-Miller setup with costless access to

external financing. For the sake of illustration, assume that the firm invests at a constant

rate l. In this environment, the firm is infinitely-lived and its value is simply the expected

present value of all future cash flows

EQ
A

[∫ ∞

0

e−rtdXt

]
= EQ

A

[∫ ∞

0

e−rtAtdYt

]
=

αA

r + σAρAηL − µ− l
. (7)

This expression illustrates that shocks to At are permanent as they affect future cash

flows too. In turn, shocks coming from dYt are short-lived and, thus, do not affect the

firm’s future prospects. Notably, the greater the price of long-term shocks, the lower the

present value of future cash flows.

Absent short-term shocks, the firm’s cash flows would always be positive (i.e., given

by αAtdt) because so is At. In turn, short-term shocks can give rise to operating losses,

which can be covered by raising external financing or by using retained earnings. We

allow management to save earnings inside the firm and denote by Mt the firm’s cash

reserves at any time t > 0. Cash reserves earn a rate of return r − λ inside the firm,

where λ represents the opportunity cost of cash. The firm can increase its cash reserves

by raising external financing. Raising external funds is costly and entails a proportional

cost p as well as fixed cost fAt. Following Bolton, Chen, and Wang (2011, henceforth

BCW) and Décamps et al. (2017), the fixed cost scales with firm size, to ensure that

the firm does not grow out of its fixed cost of equity issuance. Cash reserves satisfy the

14These works merge two theoretical frameworks. In the first, cash flows are governed by a geometric
Brownian motion, so shocks are permanent in nature, as in the models following Leland (1994). In the
second, cash flows are driven by an arithmetic Brownian motion, so shocks are transitory, see Décamps,
Mariotti, Rochet, and Villeneuve (2011), Bolton, Chen, and Wang (2011), Della Seta, Morellec, and
Zucchi (2020), and Zucchi (2024).
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following dynamics:

dMt = (r − λ)Mtdt+ AtdYt − (lt + g(l))Atdt+ dHt − dΦt − dUt (8)

where Ht, Φt, and Ut are non-decreasing processes that represent the cumulative gross eq-

uity financing, the cumulative issuance costs, and the cumulative payout to shareholders.

This equation illustrates that cash reserves increase with the interest on cash (the first

term on the right-hand side), with the firm’s earnings (the second term), and external

financing (the fourth term), whereas it decreases with investment-related costs (the third

term), issuance costs (the fifth term), and payouts to shareholders (the last term).

The firm can be forced into default if its cash reserves reach zero following a series

of negative shocks and it is not possible/optimal to raise fresh funds. As BCW (2011),

we assume that the liquidation value of risky assets, denoted by ℓτ , is a fraction of At.

That is, ℓτ ≡ ϕAτ , where ϕ ∈ [0, 1) represents the firm’s recovery rate (equivalently, 1−ϕ

represents a haircut related to default costs) and τ denotes the firm’s time of default.

Management chooses the firm’s payout (Ut), financing (Ht), investment (lt), and de-

fault (τ) policies to maximize shareholder value. That is, management solves

V (A,M) = sup
U,H,l,τ

EQ

[∫ τ

0

e−rt (dUt − dHt) + e−rτℓτ

]
,

subject to equation (8), where the expectation is taken under the risk-neutral probability

measure. In this equation, the first term in the square brackets represents the flow of

dividends accruing to incumbent shareholders, net of the claim of new shareholders. The

second term represents the present value of the cash flow to shareholders in default.
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4 Model solution

Using the stochastic discount factor in equation (2), we pin down the dynamics of the

relevant stochastic processes under the risk-neutral probability measure (see Appendix

A.2). Using these dynamics, we start by solving the model under the assumption that the

firm does not face financing frictions, in which case the Modigliani-Miller theorem holds

and financial policies are irrelevant. We then analyze the case with financing frictions in

Section 4.2, in which the firm’s investment, cash retention, payout, and financing policies

are intertwined and jointly determined.

4.1 The case with no financing frictions

Absent financing frictions, the firm has no incentives to keep cash reserves because any

funding need can be covered by raising new equity at no cost nor delay. Thus, it is optimal

for the firm to pay out any cash flow exceeding its operating needs to shareholders. That

is, financing is irrelevant. In this environment, we show that the term structure of risk

prices has solely an impact on the firm’s optimal investment policy.

In this environment, firm value is denoted by V ∗(a), being a function of its size (or

capital stock). We conjecture that V ∗(a) = av∗, where v∗ represents firm value scaled

by size. Using standard arguments, we show that the scaled firm value satisfies the HJB

equation (29) reported in Appendix A.2. Maximizing this equation with respect to l∗

gives the firm’s optimal investment rate:15

l∗ = (r−µ+σAρAηL)−
√
(r − µ+ σAρAηL)2 − 2 (α− σY ρY ηS − r + µ− σAρAηL) /κ. (9)

Notably, the investment rate l∗ is positive if the inequality

α− σY ρY ηS > r − µ+ σAρAηL (10)

15The inequality (r − µ + σAρAηL)
2 − 2 (µ− σY ρY ηS − r + µ− σAρAηL) > 0 guarantees that the

investment policy is well defined.
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holds, i.e., if risk-adjusted profitability (the left-hand side) is greater than the risk-

adjusted required return (the right-hand side). In the following, we focus on cases in

which this inequality is satisfied.

Symmetric exposure to short- and long-term shocks To isolate the effect of the

relative magnitude of market risk prices (i.e., the effect of the slope of the term structure)

on corporate investment, we start by considering the case in which the firm has symmetric

exposure to the two risks, i.e., the equality σAρA = σY ρY holds. The next proposition

relates the firm’s optimal investment rate to the slope of the term structure of market

risk prices (see Appendix A.2 for a proof).

Proposition 1 If the firm is symmetrically exposed to the two sources of aggregate shocks

(i.e., σAρA = σY ρY ), its optimal investment rate decreases with the slope of the term

structure of risk prices.

Proposition 1 demonstrates that if the firm is symmetrically exposed to short- and long-

term aggregate shocks, an upward-sloping term structure of risk prices leads the firm

to reduce its optimal investment rate compared to the flat case—i.e., the firm grows in

size at a lower rate due to the greater discount on long-term assets associated with an

increasing term structure. Conversely, a downward-sloping term structure leads the firm

to increase its optimal investment rate compared to the flat case.

Asymmetric exposure to short- and long-term shocks Next, we relax the assump-

tion of symmetric exposure to short- and long-term shocks. Proposition 2 formalizes that

the firm’s exposure to aggregate shocks is key to pin down the sensitivity of investment

to the slope (see Appendix A.2).

Proposition 2 If the firm is more exposed to aggregate long-term shocks than to short-

term shocks (i.e., σAρA ≥ σY ρY ), then the optimal investment rate decreases with the
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slope of the term structure of risk prices. If, instead, the firm’s exposure to aggregate

short-term shocks is sufficiently larger than the exposure to aggregate long-term shocks so

that the inequality

ρY σY ≥ ρAσA [1 + κ(r − µ+ ηρAσA)]−
√

ρ2Aσ
2
A

[
(1 + κ(r − µ+ ηρAσA))

2 − 1− 2ακ
]
.

(11)

holds, then investment becomes increasing with the slope of the term structure.

Proposition 2 illustrates that the firm’s exposure to aggregate shocks provides a source of

cross-sectional heterogeneity in the observed corporate responses to the slope. Specifically,

if the firm is more exposed to aggregate long-term shocks, investment decreases with the

slope of the term structure, consistent with Proposition 1. This result is reversed—and

investment becomes increasing with the slope—if the firm’s exposure to aggregate short-

term shocks is sufficiently larger than its exposure to long-term shocks. The reason is

the following. When the firm’s exposure to the two risks is asymmetric, a “level” effect

adds to the slope effect on investment. When the firm is more exposed to the long-term

shocks, the exposure-weighted level of the term structure is greater if it is upward-sloping

(i.e., the firm is more exposed to the risk with the largest market price). The level effect

compounds the slope effect, so an upward-sloping term structure leads to a stronger

decrease in investment (compared to the case in which the firm is symmetrically exposed

to the two risks). Conversely, if the firm is more exposed to the short-term shocks, the

exposure-weighted level of the term structure is greater if it is downward-sloping. In this

case, the higher level depresses investment while the downward slope should increase it.

The level effect more than offsets the slope effect if the inequality (11) holds—all else

equal, it is more likely to hold if the firm is less profitable (i.e., if α is smaller) or if assets

growth µ is smaller (or more negative, if µ < 0 represents depreciation). We investigate

this result further in Section 5.2.
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4.2 Firm policies in the presence of financing frictions

In the following, we assume that the firm faces financing frictions, as described in Section

3. Financing frictions imply that the firm finds it optimal to engage in precautionary

policies, such as holding cash reserves, and adapts its optimal investment rate to the

firm’s financial stance. We next show that the slope of the term structure of risk prices

has a key role in determining the optimal financing and investment policies.

Consider first the firm’s cash retention and payout policies. Because external financing

and liquidation are costly, it is optimal for the firm to delay equity issuance or liquidation

decisions until cash reserves are depleted. When the cash reserves are depleted, the firm

issues new equity if financing is not too costly (below we define conditions that warrant

the optimality of refinancing versus liquidation). Otherwise, the firm enters default as

it does not have funds to cover operating losses and continue operations. Notably, the

benefit of holding cash decreases with cash reserves, whereas the opportunity cost of cash

is constant. Thus, we conjecture that there is a target cash level M∗, at which costs and

benefits are equalized. Above this target level, it is optimal to pay out all the excess cash

to shareholders. Below this level, the firm retains earnings in the cash reserves.

Standard arguments yield that firm value satisfies the following Hamilton-Jacobi-

Bellman (HJB) equation in the cash retention region [0,M∗]:

rV (a,m) = max
l

(µ+ l − σAρAηL)aVa +
[(

α− σY ρY ηS − l − κ

2
l2
)
a+ (r − λ)m

]
Vm

+
1

2
a2
(
σ2
AVaa + σ2

Y Vmm

)
. (12)

The left-hand side of this equation represents the return required by investors under the

risk-neutral measure. The right-hand side is the expected change in firm value on an

infinitesimal time interval. The first term on the right-hand side represents the effect

of changes in asset size on firm value, whereas the second term represents the effect

of changes in cash reserves. These terms depend on the market risk prices ηL and ηS,
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respectively. The last term represents the effect of (asset and cash flow) volatility.

Equation (12) illustrates that two state variables—(illiquid) assets and cash—enter

the firm’s optimization problem. Homogeneity implies that we can solve for firm value by

the firm cash-to-asset ratio, c ≡ m/a. We also define the scaled value function, denoted

by v(c):

V (a,m) ≡ av(c). (13)

Substituting equation (13) into equation (12) and dividing by a gives:

rv(c) = max
l

(µ+ l − σAρAηL) [v(c)− v′(c)c] +

[
α− σY ρY ηS − l − κl2

2
+ (r − λ)c

]
v′(c)

+
v′′(c)

2

(
σ2
Ac

2 + σ2
Y

)
. (14)

Differentiating the above equation with respect to l gives the optimal firm’s investment

rate (see Appendix A.3):

l(c) =
1

κ

(
v(c)

v′(c)
− 1− c

)
. (15)

Plugging l(c) back into equation (14) yields the following equation:

(r − µ+ σAρAηL) v(c) = [α− σY ρY ηS + (r − λ− µ+ σAρAηL)c] v
′(c) (16)

+
v′′(c)

2

(
σ2
Ac

2 + σ2
Y

)
+

1

2κ

[v(c)− (1 + c)v′(c)]2

v′(c)
.

Equation (16) shows how the market prices of short-term and long-term shocks affect

firm value. The first term on the right-hand side illustrates that a greater market price of

short-term shocks ηS reduces the firm’s expected profitability, and more so if the firm’s

cash flow shocks are more correlated with aggregate shocks (i.e., ρY is greater) or more

volatile (i.e., σY is greater). In turn, the left-hand side of this equation illustrates that

the market price of long-term shocks ηL leads to an increase in the return required by the

investors. This effect commands a greater discount rate on future cash flows and, thus,
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should depress firm value. This effect is stronger if the firm’s correlation with aggregate

long-term shocks ρA is greater or if productive assets are more volatile (σA is greater).16

Equation (16) is solved subject to the following boundary conditions. If c > C∗, the

firm pays out cash in excess of C∗, meaning that v(c) = v(C∗) + c− C∗ for any c > C∗.

Subtracting v(C∗) from both sides of this equation, dividing by c − C∗, and taking the

limit as c → C∗ shows that the firm satisfies the following value-matching condition at

C∗:

v′(C∗) = 1. (17)

To ensure optimality of the target payout threshold C∗, the super-contact condition needs

to hold (see Dumas, 1991):

v′′(C∗) = 0. (18)

Because equity issuance is costly, the firm delays refinancing until cash reserves are de-

pleted. If the firm raises equity when c = 0, the following boundary condition holds:

v(0) = v(C∗)− (1 + p)C∗ − f, (19)

where C∗ represents the optimal issuance size. This equation implies that the value of the

firm when cash reserves are depleted (the left-hand side) equals the post-issuance firm-

value net of the associated financing costs (the right-hand side). The optimal issuance

size C∗ is endogenously determined by the following condition:

v′(C∗) = 1 + p, (20)

guaranteeing that the marginal benefit (the left-hand side) and cost of equity issuance

(the right-hand side) are equalized at the post-issuance cash level. The firm is better off

16Note that the last term in the square brackets on the right-hand side shows that a greater ηL also
leads to an increase in the return on cash. Yet, the opportunity cost of cash, i.e., the gap between the
return required by the investors and the return on cash (r − µ+ σAρAηL − (r − λ− µ+ σAρAηL) = λ)
remains constant and equal to λ.
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issuing new equity than liquidating if the following inequality

v(C∗)− (1 + p)C∗ − f > ϕ (21)

holds. The left-hand side of this inequality represents firm value at c = 0 if the firm raises

equity, whereas the right-hand side represents firm value in liquidation.

We next turn to analyze our solution, to understand how the slope of the term struc-

ture of risk prices affects investment, payout, cash retention, the size of equity issuance,

and the optimality of refinancing versus liquidation.

5 Model analysis

Table 1 reports our baseline parameterization. The risk-free rate is 0.045, and the oppor-

tunity cost of cash is 0.01. The cash flow drift α is 0.20, and µ is equal to –0.105, which

lies in the ballpark of the depreciation rates in BCW (2011, 2013). We set the adjust-

ment cost parameter to 2.85, which is in the range of the estimates of Eberly, Rebelo,

and Vincent (2008).17 Proportional and fixed financing costs are, respectively, equal to

0.06 and 0.002, in line with BCW (2013) and Décamps et al. (2017). Throughout our

analysis, we focus on the case in which the firm refinances every time the cash reserves

are depleted (i.e., condition (21) holds) unless otherwise noted.18 To isolate the effect

of the slope of the term structure on corporate policies, we start by assuming that the

volatility of permanent and temporary shocks are both equal to 0.12, which is in line with

the cash flow volatility in BCW (2013). Additionally, we analyze the case in which the

volatility of permanent shocks is greater than the volatility of transitory shocks, which

is consistent with previous models (Décamps et al., 2017; Hackbarth, Rivera, and Wong,

17Throughout our analysis, we rule out parameterizations for which investment rates are largely neg-
ative for any cash level (i.e., depicting a “sinking ship”).

18For illustration, in Section 5.1 we also consider the case in which the firm liquidates the first time
cash reserves are depleted (i.e., condition (21) does not hold.)
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2022; Lee and Rivera, 2021) as well as with the estimates of Gryglewicz et al. (2022).

Table 1

To focus on the effects associated with the slope of the term structure of risk prices, we

assume that the sum ηS +ηL—gauging the level of the term structure—is constant across

the different cases (increasing, decreasing, and flat), being equal to 0.4 in the baseline

parameterization. Unless otherwise mentioned, we assume that ηS = ηL = 0.2 in the case

in which the term structure is flat, ηS = 0.05 < 0.35 = ηL in the increasing case, and

ηS = 0.35 > 0.05 = ηL in the decreasing case.

5.1 Symmetric correlation with aggregate shocks

We start by considering the case in which the firm’s shocks are symmetrically correlated

with short-term and long-term aggregate shocks (i.e., ρY = ρA).

Figure 1

Figure 1 shows the firm’s investment rate l(c) over the cash retention interval [0, C∗]

when the term structure of risk prices is flat, increasing, and decreasing. The left panel

considers the case in which σA = σY , which is analogous to that analyzed in Proposition

1 for the case with no financing frictions. It illustrates that the firm’s investment rate is

the lowest if the term structure of risk prices is increasing, in which case it always lies

below the flat case. Conversely, the investment rate is the largest if the term structure

of risk prices is decreasing, exceeding the investment rate associated with the flat case.

The right panel displays the investment rate if σA > σY , in which case the effect of the

slope of risk prices is qualitatively similar but quantitatively stronger, consistent with

Proposition 2 absent financing frictions.

Figure 1 indicates that, if the term structure of risk prices is increasing, the firm
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may disinvest when its cash ratio is low, to avoid costly refinancing. Conversely, if the

term structure is decreasing, the firm exhibits a positive investment rate for any level of

cash reserves. That is, if the term structure is increasing, the firm may favor short-term

(emergency) financing solutions such as asset sales rather than resorting to long-term ones

that would strengthen the firm’s liquidity position while preserving its productivity (such

as equity issuance). Figure 2 further analyzes these patterns by varying not only the sign

but also the steepness of the slope. The top (respectively, bottom) panel focuses on the

case in which the term structure is increasing (decreasing). It shows that the effects of

the slope on investment and asset sales are stronger if it is steeper.

Figure 2

Figure 3 studies the marginal value of cash, which is shown to be non-monotonic with

the slope of the term structure. The reason is that cash serves to support investment

as well as to avoid costly refinancing. When the cash ratio is high, cash serves mostly

to finance investment. As cash flows are discounted less aggressively when the term

structure is decreasing, the firm has a greater investment appetite, and cash is more

valuable. When, instead, the cash ratio is low, cash serves primarily to avoid costly

financing. As the surplus from financing is discounted more aggressively when the term

structure is increasing, cash is more valuable in this case as it helps delay costly issuances.

Figure 3

We next investigate how the term structure impacts firm’s financing choices, namely

the size of cash reserves and of equity issuances. Figure 1 shows that the target payout

threshold C∗ is smaller if the term structure is increasing compared to the flat case, which

means that the firm pays out cash to shareholders more often. In turn, the target payout
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threshold is larger if the term structure is decreasing compared to the flat case.

Table 2

Table 2 further investigates the firm’s optimal cash thresholds when varying the slope

of the term structure under the baseline parameterization in Table 1 (top panel), when

financing frictions are more severe (i.e., f = 0.01, middle panel), and for σY > σA (bottom

panel). It illustrates that the size of equity issuances is smaller if the term structure is

increasing. I.e., because the surplus accruing to incumbent shareholders is discounted

more aggressively if the term structure is increasing, the optimal size of equity issuances

shrinks, all else equal. While this lower reliance on external financing may suggest that the

firm may accumulate larger cash reserves, Table 2 shows that the target payout threshold

is smaller if the term structure is increasing, which means that the firm pays out cash

to the investors more often. Conversely, the optimal issuance size and the target payout

level are larger when the term structure of risk prices is decreasing compared to the flat

case. These effects are stronger if the term structure is steeper. Moreover, comparing the

top and middle panels indicates that the threshold C∗ is larger if the firm faces greater

costs of equity issuance, in line with previous cash management models.

Table 2 also investigates the firm (dis-)investment policy by analyzing how the cash

threshold above (below) which the firm’s investment rate is positive (negative), denoted

by C0, varies with the slope.19 The table shows that the threshold C0 is larger if the term

structure of risk prices is increasing and sufficiently steep, and more so if financing frictions

are tighter (i.e., when f is greater, middle panel) or if the firm is more exposed to long-

term shocks (σA > σY , bottom panel). Conversely, if the term structure is decreasing, the

firm is less likely to engage in asset sales. Table 2 then confirms that an increasing term

structure not only reduces the firm’s investment rate compared to the flat cases, but also

19I.e., (i.e., l(C0) = 0. In the table, “n.a.” indicates that the threshold does not lie in the interval
[0, C∗], in which case the firm’s investment rate is always positive (.e., the firm never engages in asset
sales).
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increases the likelihood that the firm engages in asset sales when its cash ratio is low.

The last column of Table 2 looks at firm value at c = 0. It shows that firm value is

the lowest (highest) when the term structure is increasing (decreasing). This result has

implications for the firm’s decision to liquidate or raise new equity whenever cash reserves

are depleted. Recall that the firm finds it optimal to raise new financing at c = 0 (instead

of liquidating) if condition (21) holds, in which case the firm continuation value is greater

than the liquidation value of assets. If firm value decreases sufficiently due to the effect

of an upward-sloping term structure, then the firm may find it optimal to liquidate the

first time it runs out of cash. This means that, for issuance costs of a given size, the

firm is more likely to find it optimal to liquidate if the term structure of risk prices is

upward-sloping.

Figure 4

Consider now the case in which the firm liquidates the first time cash reserves are

depleted, in which condition (21) does not hold. Figure 4 shows that the firm exhibits a

positive investment rate only if the cash ratio is sufficiently high, and negative otherwise.

As in the refinancing case, the positive investment rate is greater if the term structure

is decreasing. Differently, the firm disinvests at a higher rate when the term structure is

decreasing. The reason is the following. When the firm does not have access to external

equity financing, disinvestment is the only source of fresh funds that helps avert a forced

liquidation. Thus, differently from the refinancing case, disinvestment helps preserve the

firm’s long-term prospects by delaying liquidation. In this case, disinvesting at a higher

rate signals a more precautionary policy, aimed at preserving the firm’s survival. The

right panel of this figure shows that, differently from the refinancing case, the marginal

value of cash is monotonic with the slope of the term structure. As the firm does not

have access to outside equity markets, cash is more valuable in this case in that it helps

avert forced liquidations (rather than simply averting costly refinancing, as instead in the

refinancing case). Thus, cash is more valuable when the term structure is decreasing.
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The term structure of risk and the horizon of corporate policies Put together,

our analysis illustrates that the slope of the term structure of risk prices importantly

affects corporate horizon. Our model departs from previous works aimed at studying

the horizon of corporate policies in at least two dimensions. First, it does not involve

channels related to shareholders-managers agency conflicts nor stock market pressure due

to quarterly reporting. Second, whereas previous contributions infer corporate horizon

solely from a firm’s appetite to invest in corporate growth, our model also looks at finan-

cial policies, which inform about the firm’ balance between long-term financial resilience

through precautionary policies versus emergency financing decisions (such as asset sales)

that may harm long-term profitability.

Specifically, if the term structure is increasing, the firm reduces its investment in pro-

ductive assets and pays out cash to shareholders more often. It also reduces the size of

its precautionary target cash ratio and of equity issuances. The firm is more likely to dis-

invest productive assets when financial constraints tighten in order to delay costly equity

issuance, at the cost of impairing long-term profitability. Overall, the firm favors current

earnings and payouts over long-term growth through investment and precautionary cash

retention—i.e., if the term structure of risk prices is upward-sloping, the firm shortens

the horizon of corporate policies compared to the case in which the term structure is flat.

Conversely, if the term structure is downward-sloping, the firm increases its investment

rate (which benefits long-term profitability), delays payouts to shareholders, and increases

its target cash ratio and the size of equity issuances. The firm also increases the size of

equity issuances. That is, if the term structure is downward-sloping, the firm extends

the horizon of corporate policies—i.e., not only it poses more emphasis on long-term in-

vestment than on current payouts, but also on precautionary financing policies aimed at

strengthening the firm’s financial resilience.
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5.2 Asymmetric correlation with aggregate shocks

The firm’s correlations with aggregate shocks play a key role in determining the extent

to which the term structure of risk prices impacts corporate policies. Equation (16)

illustrates that a greater correlation with aggregate long-term shocks ρA or a greater

market price ηL both lead to an increase in the (risk-adjusted) return required by the

investors. In turn, larger correlation with short-term shocks ρY or a greater market price

ηS both lead to a decrease in the expected (risk-adjusted) profitability of cash flows. We

now investigate the role played by the relative size of ρY and ρA.

Figure 5

Figure 5 shows the firm’s optimal investment rate when varying the relative magnitude

of the firm’s correlation with aggregate shocks, under the assumption that the firm’s

volatilities assume the same value, σA = σY . As long as the inequality σAρA ≥ σY ρY

holds (which is the case for the left and the middle plots), the firm exhibits a negative

sensitivity of investment to the slope—i.e., investment is larger if the term structure is

decreasing, as in Section 5.1. Conversely, if σAρA < σY ρY holds (which is the case in the

right panel of this figure), the opposite pattern can arise—i.e., the investment rate is the

largest if the term structure is increasing. These results are consistent with Proposition

2 for the case with no financing frictions. In fact, when the firm’s exposure to aggregate

shocks is asymmetric, a “level” effect compounds the slope effect, as explained in Section

4.1. The level effect boosts the effect of the slope (as isolated in the symmetric case)

if the firm is more correlated with long-term shocks (i.e., in the left panel of Figure 5).

Conversely, if the firm is more exposed to short-term shocks (as in the right panel of

Figure 5), the level effect can more than offset the slope effect. Indeed, if the firm is more

exposed to short-term aggregate shocks than to long-term ones and the term structure is

decreasing, it is more exposed to the risk with the largest market price—in this case, the
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level effect is greater in magnitude and can more than offset the slope effect.

Figure 6

As shown by Proposition 2 for the case with no financing frictions, not all firms that

are more exposed to short-term shocks exhibit a positive sensitivity of their investment

rate to the slope—i.e., the level effect does not necessarily prevail on the slope effect.

Specifically, Proposition 2 shows that σY ρY needs to sufficiently exceed σAρA for the

sensitivity of investment to the slope to become positive. Figure 6 confirms this result

for the case with financing frictions. The figure shows that, when σY ρY > σAρA, the

sensitivity of investment to the slope is more likely to become positive if the firm is less

profitable or if its assets depreciate at a higher rate, all else equal.

That is, by identifying sources of cross-sectional heterogeneity in the firm’s response to

the slope of risk prices, our analysis translates into practical guidance for empirical work

by exploiting differential responses in the cross-section of firms based on their exposure

to aggregate risks and, for firms that are more exposed to short-term shocks, based on

firm characteristics.

5.3 Firm risk premia

Whereas so far we have focused on the effects of market-wide risk prices on corporate

policies, we now investigate how they shape the endogenous firm-level risk premium.20 A

firm’s conditional risk premium satisfies:

θ(c) = ηLρAσA

(
1− cv′(c)

v(c)

)
︸ ︷︷ ︸

θA(c)

+ ηSρY σY
v′(c)

v(c)︸ ︷︷ ︸
θY (c)

. (22)

20We adopt the heuristic approach of BCW (2011, 2013) in deriving the firm’s expected return, which
involves the comparison of the HJB under the physical and the risk-neutral probability measure.

30



The term θA(c) compensates investors for the exposure to long-term aggregate shocks,

whereas the term θY (c) for the exposure to short-term shocks. Both terms are a function

of the cash-to-asset ratio, c, and, hence, endogenously move over time.21

Figure 7

The slope of the term structure affects the relative weight of θA(c) and θY (c) on the

overall risk premium—namely, if the term structure of risk prices is increasing (respec-

tively, decreasing), θA(c) (θY (c)) has a larger weight, all else equal. In addition, the

firm-specific exposure to the two risks also impacts the magnitude of the risk premium.

Figure 7 shows that if the firm is more exposed to the long-term shock (respectively,

short-term shock), its risk premium is larger if the term structure is increasing (decreas-

ing). Furthermore, the model predicts that investment and risk premia are respectively

increasing and decreasing with the cash ratio22—thus, our model delivers a negative en-

dogenous relation between investment and risk premia, consistent with Li, Livdan, and

Zhang (2009); Fama and French (2006); Anderson and Garcia-Feijóo (2006); Titman, Wei,

and Xie (2004). Moreover, comparing Figure 7 with Figure 5 illustrates that investment

and risk premia move in opposite directions when varying the slope of risk prices.

Importantly, our analysis shows that the term structure of risk prices affects the way

financing frictions impact firms’ risk premia. To see this, consider the conditional risk

premium absent financing frictions:

θ∗ = ηLρAσA︸ ︷︷ ︸
θ∗A

+ ηSρY σY
1

v∗︸ ︷︷ ︸
θ∗Y

, (23)

21Notably, the risk premium in equation (22) differs from that in previous dynamic corporate finance
models with financing frictions (such as BCW, 2011), in which the firm is subject to short-term shocks
and, thus, only includes the θY component.

22While Figure 7 shows the ratio of risk premia in the sloped versus flat cases, unreported results show
that the risk premium decrease with the firm’s cash ratio as in BCW (2011, 2013), irrespective of the
slope of the term structure.
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where v∗ is firm value scaled by assets absent financing frictions (see Section 4.1 and

Appendix A.2). The long-term component θA(c) is smaller in the presence of financing

frictions—θA(c) and θ∗A coincide at c = 0, and the inequality θA(c) < θ∗A holds for any

c ∈ (0, C∗]. The reason is that financing frictions lead the firm to hold cash. Whereas

productive assets are correlated with aggregate long-term risk, cash is a safe asset. Thus,

the composition of productive assets and cash leads to a decline in the firm’s exposure to

long-term risk compared to the case with no financing frictions (in which the firm keeps

no cash). Second, the short-term component θY (c) can be either greater or smaller than

θ∗Y depending on its cash ratio, being greater (smaller) than θ∗Y if the firm’s cash ratio is

small (large). On top of the aforementioned asset composition effect—which pushes the

short-term premium down as the cash-to-asset ratio increases—the increased constraints

associated with low cash reserves push the short-term premium above θ∗Y .

Figure 8

Figure 8 compares the risk premium and its components in the presence and in the

absence of financing frictions. As confirmed by the middle panel, θA(c)/θ
∗
A is smaller

than one for any level of cash reserves. Conversely, the right panel shows that θY (c)/θ
∗
Y is

smaller (greater) than one if cash reserves are sufficiently large (small). As a result, the

risk premium θ(c) can be larger in the presence of financing frictions due to the dynamics

of the short-term component θY (c)—specifically, the figure shows that θ(c) is greater than

θ∗ if the cash ratio is low and more so if the term structure is decreasing, in which case the

weight of θY (c) on θ(c) is greater. This result then rationalizes the conflicting evidence

on the effect of financial constraints on stock returns (see, e.g., Lamont, Polk, and Saá-

Requejo, 2001; Whited and Wu, 2006) by illustrating that these tests should condition

on the firm’s cash ratio and the slope of the term structure of risk prices.23

23Using novel measures of financial constraints using textual analysis, Buehlmaier and Whited (2018)
shows that financial constraints risk is significantly priced, with debt-related risk being the most impor-
tant (which, however, we do not analyze in out model) and equity-related risk being the least important.
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5.4 Applications

Duration and asset prices Corporate horizon has an obvious impact on cash flow

duration. Firms with a longer horizon delay payouts and invest more—meaning that

they are willing to receive lower cash flows today to support growth and, then, receive

larger cash flows in the future. Conversely, firms with a shorter horizon distribute more

cash flows today and invest less, meaning that they are more profitable in the present

but have meager growth prospects.

Our model illustrates that, if the term structure is increasing, firms should exhibit a

shorter duration—i.e., less investment and greater payouts today.24 Also, as our analysis

in Section 5.3 illustrates, the firm will have a greater risk premium. Conversely, if the

term structure is decreasing, the firm should exhibit a longer duration—i.e., a larger

investment rate and lower payouts. Moreover, in this case, the firm risk premium would

be smaller.

Our model can then reproduce the negative relation between duration and expected

returns observed in the data (Dechow, Sloan, and Soliman, 2004; Lettau and Wachter,

2007, 2011; Da, 2009; Weber, 2018). In this strand, recent works show that cash flow du-

ration spans alternative risk factors including value, profitability, investment, and payout

(see Chen and Li, 2018; Gonçalves, 2021a; Gormsen and Lazarus, 2023). Our model is

consistent with this view. Because, as we show, short-duration firms exhibit low invest-

ment, greater payouts, and greater risk premia, our model is consistent with the view

that the investment and payout factors are spanned by duration. Because of their lower

investment compared to long-duration firms, short-duration ones are more profitable but

exhibit lower growth and, thus, lower valuation ratios (see Figure 3). Thus, our model is

See also Livdan, Sapriza, and Zhang (2009) and Bolton, Chen, and Wang (2013).
24For the sake of brevity, we focus on these case in which the firm is symmetrically exposed to the two

risks and on the case in which the firm is more exposed to the long-term risk. The first case is helpful to
single out the effect of the slope, whereas the second is consistent with the greater volatility of persistent
shocks documented by Gryglewicz et al. (2022) as well as with the observation that the term structure
of equity strip exposure to the overall equity market is upward sloping (see Gonçalves, 2021b).
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also consistent with the view that duration subsumes the profitability and value factors.

As our model shows, cash flow duration is an endogenous variable and, specifically,

largely depends on the firm’s exposure to systematic (short- and long-term) risks and

their risk prices. As a result, our model suggests that revisiting the role of cash flow

duration conditional on the term structure of risk prices and the firm’s exposure to risks

with different horizons would be a fruitful avenue of research.

The distortions of ignoring the term structure of risk prices To illustrate the

importance of accounting for the term structure of risk prices, we now quantify the dis-

tortions if the firm ignores it. To this end, Table 3 shows the percentage distortion in

investment, optimal cash retention (and, thus, payout), and equity issuance when the

term structure is either increasing/decreasing but the firm assumes that it is flat.

Our analysis implies that ignoring the slope when it is increasing (decreasing) leads

to overinvestment (underinvestment).25 The table shows that the distortions are notable

and vary substantially with the steepness of the slope—when the gap between ηL and ηS

is equal to 0.3 (i.e., an increasing slope), the investment rate is about 8.7% higher than

optimal (i.e., if the firm correctly accounted for the slope). When the gap between ηL

and ηS is equal to -0.3 (a decreasing slope), the investment rate is about 9.5% smaller

than optimal. The magnitude of the distortion increases substantially if σA > σY . In

this case, if the firm ignores an increasing slope, it will exhibit a positive investment rate

when cash reserves are close to zero even if it would be optimal to disinvest (not shown).

When ignoring an increasing term structure, the firm also builds excessive cash re-

serves, so it pays out dividends less often. Moreover, it raises more cash than optimal at

refinancing events. Table 3 shows that the target cash level is about 5.8% larger than op-

timal when ηL−ηS = 0.3, and the equity issuance size is about 5.7% greater. Conversely,

if ηL − ηS = −0.3, the firm keeps a cash balance about 7% smaller and reduces the size

of equity issuances by 6.8%. Again, these distortions widen in size if σA > σY .

25To fix ideas, we focus on the investment distortions at the target cash level, C∗.
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Our analysis then warns that, because the term structure of risk prices shapes the

intertemporal tradeoffs at the heart of optimal decisions, ignoring it leads to substantial

distortions. E.g., ignoring a downward-sloping term structure—which is consistent with

the recent findings of sizable short-term equity risk premia—leads to overweight the short-

term. Conversely, ignoring an upward slope leads to overweight the long-term.

Roadmap to empirical testing The slope of the term structure of risk is a macroeco-

nomic phenomenon exogenous to the firm. One productive way to test our model would

be to conduct comparative statics for the endogenous variables (investment, payouts,

cash reserves, and equity issuances) relative to the slope of the term structure and the

parameters governing the firm’s sensitivity to it.26 The cross-sectional heterogeneity in

the response to the term structure suggested by our model (see Section 5.2) eases this

approach. In particular, when the term structure increases (goes from negative, to flat, or

to positive), we expect that firms that are symmetrically exposed to short- and long-term

shocks: (1) decrease their investment rate, (2) pay out more to shareholders (in the form

of dividends or share repurchases), (3) keep less cash, and (4) decrease the size of equity

issuances. Firms that are relatively more exposed to long-term shocks should exhibit even

stronger effects. In turn, firms that have a greater exposure to short-term shocks should

exhibit a much lower effect and, depending on a host of firm characteristics (as described

in Section 5.2), such an effect could be qualitatively the opposite.

If, instead, our results are not confirmed empirically, then either: (a) our theory is

incorrect (i.e., the term structure does not impact corporate horizon empirically), or (b)

our theory is right but managers do not take the term structure into account when making

corporate decisions. It would be possible to test (b) by studying how firm value changes

as the slope of the term structure varies. In particular, if managers do not take the term

structure into account, then we should see an increase in firm value as the term structure

26I.e., we would test whether the rich set of correlations stemming from our model is matched in the
data—this approach is also adopted by Danis, Rettl, and Whited (2014).
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flattens (i.e., goes from decreasing/increasing to flat), and a decrease in firm value as

the term structure becomes positively or negatively sloped (or the steepness increases).

In fact, if firms do not take the term structure into account, they would be adopting

suboptimal policies if the term structure is sloped (as illustrated in Table 3) but the right

ones when the term structure is flat. Therefore, when the term structure goes from sloped

to flat, such distortions should milden and lead to an increase in firm value. In turn, when

the term structure goes from flat to sloped, the distortions would increase, then leading

to a decrease in firm value.

6 Time-variation in risk prices

The analysis so far assumes that the term structure of risk prices is static. In this

section, we relax this assumption and allow risk prices to vary over time. Consistently,

van Binsbergen, Hueskes, Koijen, and Vrugt (2013), Gormsen (2021), and Bansal et al.

(2021) document that the level and the slope of the term structure of equity vary with

economic conditions, which can be rationalized in a general equilibrium setting with

time-varying prices of risk (see Breugem et al., 2024).27

In this extension, we assume that the firm can be in two (observable) states i = G,B,

where G denotes the good state (expansion) and B denotes the bad state (recession). We

assume that the state switches from G to B (respectively, from B to G) with probability

πGdt (πBdt) on any (t, t+dt). When the state switches, the market risk prices change. We

denote by ηAG and ηAB (respectively, ηY G and ηY B) the market price of long-term (short-

term) shocks in the good and in the bad state. Because our focus is on the time-variation

of risk prices, we keep other quantities to be invariant across the two states.

27Moreover, Haddad, Kozak, and Santosh (2020) and Giglio, Kelly, and Kozak (2023) stress that time-
variation in risk prices is a critical property of the stochastic discount factor and equity term structure
dynamics. Consistently, Chernov, Lochstoer, and Lundeby (2018) and Favero, Ortu, Tamoni, and Yang
(2019) emphasize the importance of time-variation in risk prices by implementing tests of asset pricing
models exploiting multi-horizon returns and their predictability.
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In this augmented setting, firm value and policies are state-contingent. Specifically,

the optimal investment rate in state i is given by:

li(c) =
1

κ

(
vi(c)

v′i(c)
− 1− c

)
. (24)

We report the analytical details of the model solution in Appendix A.4.

We analyze the implications of this extension by considering again our baseline pa-

rameterization, focusing on the case σY = σA = 0.12. Additionally, we assume that the

transition intensities between the two states are symmetric, to mute any effect driven by

the longer duration of one state over the other.28 We realistically assume that the level

of the term structure is higher in the bad state than in the good state and study the

impact of a procyclical and countercyclical slope. That is, by analyzing both cases, we

remain agnostic regarding the empirical discussion concerning the slope cyclicality. As

we show that the procyclicality and countercyclicality have very different implications

for the optimal firm policies, our analysis urges the empirical asset pricing literature to

resolve this debate.

Figure 9

Procyclical slope The top panel of Figure 9 shows the optimal investment rate when

the slope of risk prices is procyclical—i.e., it is increasing in expansion (the good state G)

and decreasing in recession (the bad state B). The top left panel shows that the optimal

investment rate is larger in the good state than in the bad state.29 This result is the

28BCW (2013) assume that the transition intensity out of the good state G is 0.1—i.e., expansions
on average last ten years—and the transition intensity out of bad state B is 0.5—i.e., recessions last on
average two years. However, under the risk-neutral measure, the relative magnitude of these intensities
flips in BCW (2013): the transition intensity out of the good state is 0.3 and the transition intensity
out of the bad state is 0.167. We do not attach additional risk prices to state transitions and, thus, risk
adjustments to transition intensities. Instead, our assumption that πG = πB = 0.1 helps us single out
the effects driven by time-variation in the level and the slope of risk prices.

29In this plot, we assume that ηY G = 0 and ηAG = 0.2 in the good state so that the price of short-term
shocks is smaller in the good state, whereas ηY B = 0.6 and ηAB = 0.2 so that the price of long-term
shocks is smaller in the bad state.
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composition of two forces. In the good state, the term structure of risk prices is not only

increasing, but also lower in levels compared to the bad state. As a result, while the

slope of the term structure should lead to less investment (as illustrated in the analysis

in Section 5.1), the level acts as an offsetting strength. Offsetting strengths also arise in

the bad state: Whereas we would expect greater investment resulting from the decreasing

slope of the term structure, its higher level depresses these quantities.

To disentangle the effect of the slope, the top right panel considers an environment in

which ηY i + ηAi remains constant in the two states (i.e., ηY G + ηAG = ηY B + ηAB). In this

environment, the investment rate is greater in the bad state—in which the term structure

is decreasing—than in the good state, consistent with the analysis in Section 5. Overall,

comparing the right and left top panels indicates that when the slope is procyclical, the

time-variation in the level and in the slope of the term structure have opposite directional

effects on investment. When risk prices are relatively low in expansion, firms should have

greater incentives to invest, all else equal. However, the upward slope moderates this

effect—the greater price of long-term shocks decreases the firm’s optimal investment rate.

Conversely, when the prices of risk are high in recession, firms reduce investment, but a

downward-sloping term structure acts as a countervailing strength.

Countercyclical slope In the bottom panel of Figure 9, we consider the case in which

the slope is countercyclical—i.e., it is decreasing in expansion and increasing in recession.30

The bottom left panel shows that investment is greater in the good state, similar to the

top left panel. Again, this is the composition of the effect driven by time-variation in level

and slope of the term structure. Yet, in this case, time variation in level and slope have

the same qualitative effect, as illustrated by the bottom right panel in which we assume

that the sum of the prices of risk ηY i + ηAi is constant across the two states. In fact,

when prices of risk are relatively high in the bad state, the firm cuts its investment rate.

30In the top panel, we assume that ηY G = 0.2 and ηAG = 0 in the good state so that the price of long-
term risk is smaller in the good state, whereas ηY B = 0.2 and ηAB = 0.6 so that the price of short-term
risk is smaller in the bad state.
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Furthermore, upward-sloping market prices in the bad state further reduce the firm’s

optimal investment rate. Conversely, in the good state, market risk prices are lower in

levels and are downward-sloping, which both have a positive effect on investment.

7 Concluding Remarks

Over the last decade, two parallel lines of work have absorbed the attention of financial

economists. In corporate finance, works have growingly acknowledged the differential

impact of short-term (temporary) and long-term (permanent) shocks on optimal decision-

making. In parallel, the asset pricing literature has questioned the view that the equity

market mostly remunerate the long-term and shown that short-term risk premia are

sizable. While the second strand has important implications for discount rates used by

corporations, there is no work that integrates these two lines of work. In this paper, we

start filling this gap. We introduce heterogeneity in the pricing of short-term (temporary)

risk and long-term (persistent) risk into a dynamic corporate finance model with financing

frictions, showing that it affects the firm’s balance between short-term objectives (e.g.,

current earnings and payouts) and long-term ones (e.g., growth through investment).

Our model shows that firms should extend the horizon of corporate policies if short-

term shocks have a greater market price than long-term ones (which is consistent with the

sizable short-term risk compensation supported by the equity term structure literature).

Ignoring this relative pricing leads to distorted corporate policies that put too much em-

phasis on the short term—specifically, it leads firms to underinvest, pay out dividends

too often, hold inadequate precautionary cash reserves, and favor disinvestment to costly

refinancing when financial constraints tighten. Notably, whereas the horizon of corporate

policies has been largely investigated by the previous literature through the lens of man-

agerial incentives and optimal contracting, we provide a novel explanation based on the

heterogeneous pricing of aggregate risk of various persistence. Our analysis is extended

to allow for heterogeneous firm exposure to these risks and time variation in risk prices,
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consistent with the evidence.
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A Appendix

A.1 Risk prices and the term structure of equity

In this Appendix, we link the relative prices of short-term and long-term risks to the slope
of the term structure of equity risk premia.

In Section 3, we assume that the stochastic discount factor is described by equation
(2). Additionally, we now assume that there is an equity market index in the economy.
The payout of the equity market index, denoted by Dt, satisfies the following dynamics:

d logDt = (D̄ +DAt)dt+ dDY t, (25)

where we assume that DAt follows:

dDAt = −λADAtdt+ sAdW̃t,

and DY t follows:
dDY t = −λYDY tdt+ sY dB̃t.

The component DAt induces a stochastic trend and, thus, its fluctuations accumulate
over time and capture permanent risk. Instead, the component DY t produces stationary
fluctuations and, thus, captures transitory risk. The joint dynamics of the stochastic
discount factor and the payout of the equity market are inspired by the recent asset
pricing literature on the term structure of equity (e.g., Breugem et al., 2024).

We compute the term structure of equity risk premia, i.e., the instantaneous risk
premium on the dividend strip as a function of maturity. The dividend strip price with
maturity τ is the present value of the market dividend paid out at the horizon τ and has
exponential closed form:

P (t, τ) = ξ−1
t exp [p0(τ) + pξ(τ) log ξt + pD(τ) logDt + pA(τ)DAt + pY (τ)DY t] ,

where the coefficients satisfy the following HJB equation:

0 = p′0(τ) + p′ξ(τ) log ξt + p′D(τ) logDt + p′A(τ)DAt + p′Y (τ)DY t

+ pξ(τ)(−r − η2A/2− η2Y /2) + pξ(τ)
2(η2A + η2Y )/2 + pD(τ)(D̄ +DAt − λYDY t)

+ pD(τ)
2s2Y /2 + pA(τ)(−λADAt) + pA(τ)

2s2A/2 + pY (τ)(−λYDY t) + pY (τ)
2s2Y /2

+ pξ(τ)pD(τ)(−ηY sY ) + pξ(τ)pA(τ)(−ηAsA) + pξ(τ)pY (τ)(−ηY sY ) + pD(τ)pY (τ)s
2
Y ,
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with initial conditions pξ(0) = pD(0) = 1 and pA(0) = pY (0) = 0. Calculations give

p0(τ) = (D̄ − r)τ +
s2A
4λ3

A

(
4e−λAτ + 2λAτ − 3− e−2λAτ

)
+

s2Y
4λY

(1− e−2λY τ ) +
sY ηY
λY

(e−λY τ − 1),

pξ(τ) = 1,

pD(τ) = 1,

pA(τ) =
1− e−λAτ

λA

,

pY (τ) = e−λY τ − 1.

Thus, the dividend strip prices can be simply written as

P (t, τ) = Dt exp [p0(τ) + pA(τ)DAt + pY (τ)DY t] .

In turn, we derive the risk premium as a function of the horizon:

rp(t, τ) = − 1

dt

〈dξt
ξt

,
dP (t, τ)

P (t, τ))

〉
= pA(τ)sAηA + [1 + pY (τ)] sY ηY

= sAηA
(1− e−λAτ )

λA

+ sY ηY e
−λY τ . (26)

The first term on the right hand side of equation (26) induces an upward-sloping effect
with the horizon, whereas the second term induces a downward-sloping effect. As a result,
the slope of the term structure of equity can be either positive or negative. The larger
(smaller) the market price of long-term risk relative to the market price of short-term risk,
the stronger the upward-sloping (downward-sloping) effect. By calculations, the slope of
the risk premium is given by:

∂τrp(t, τ) = e−λAτsAηA − e−λY τλY sY ηY . (27)

Notably, the slope depends on the market prices of risk and the exposure of the market
dividend (i.e., the payout of the equity index) to the risks sA and sY (scaled by the rate at
which these shocks dissipate—i.e., the speed of mean reversion). In our example, the sign
of the slope only depends on the sign of ηA−ηY when sA/sY = λY and λA = λY , otherwise
both the prices of risks and the exposures to risks affect its sign.31 The relevance of both
prices of risk and exposures is consistent with our firm-level analysis, where the impact

31In general equilibrium, ηA and ηY are endogenous and naturally increase with sA and sY respectively
(see, e.g., Breugem et al., 2024). It turns out that the relative price of the two risks is a first order
determinant of the slope of the equity risk premium term structure.

42



of relative risk pricing depends on the firm’s exposure to such risks.

A.2 Proof of the results in Section 4.1

Denoting by dWt the risk-neutral counterpart of dŴt, standard arguments yield the risk-
neutral dynamics of the firm’s productive assets, given by the following equation:

dAt = (µ+ lt − σAρAηL)Atdt+ σAAtdWt.

Similarly, we denote the risk-neutral counterpart of dB̂t by dBt and obtain the risk-neutral
dynamics of the firm’s operating revenues:

dYt = (α− σY ρY ηS)dt+ σY dBt.

In the case with no financing frictions, the firm keeps no cash. Firm value, denoted
by V ∗(a) in this environment, satisfies the following HJB equation:

rV ∗(a) = max
l∗

(µ+ l∗ − σAρAηL) aV
∗
a (a) +

1

2
a2σ2

AVaa(a) +

(
α− σY ρY ηS − l − κl2

2

)
a.

(28)
Conjecture that V ∗(a) = av∗, where v∗ represents firm value scaled by productive assets.
Substituting this expression into equation (28) yields

rv∗ = max
l∗

(µ+ l∗ − σAρAηL) v
∗ +

(
α− σY ρY ηS − l∗ − κ(l∗)2

2

)
. (29)

Maximizing this equation with respect to l∗ gives the optimal investment rate reported
in equation (9) in the main text. Substituting equation (9) into the above equation gives
an expression for scaled firm value in the absence of financing frictions. We next prove
Proposition 1 and Proposition 2, which relate the firm’s optimal investment rate to the
slope of the term structure of risk prices.

Proof of Proposition 1 This proposition focuses on the case in which the firm is sym-
metrically exposed to long-term and short-term aggregate shocks, i.e., σAρA = σY ρY ≡ σρ
(in the rest of this proof, we use σρ to ease the notation). To focus on the relative mag-
nitude of ηS versus ηL, we assume that the sum of the market prices of risk is constant
and denote it by η ≡ ηS + ηL. Namely, we assume that the market price of long-term
and short-term shocks respectively satisfy ηL ≡ ηϵ and ηS ≡ η(1 − ϵ), with ϵ ∈ [0, 1]. If
ϵ = 1

2
, the term structure of market risk prices is flat. If ϵ ∈

[
0, 1

2

)
, the term structure

is downward-sloping. If, instead, ϵ ∈
(
1
2
, 1
]
, the term structure is upward-sloping. Using
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this notation, equation (9) boils down to:

l∗ = (r − µ+ σρηϵ)−
√

(r − µ+ σρηϵ)2 − 2 (α− σρη(1− ϵ)− r + µ− σρηϵ) /κ. (30)

Differentiating with respect to ϵ gives:

∂l∗

∂ϵ
= ηρσ

(
1− r − µ+ σρηϵ√

(r − µ+ σρηϵ)2 − 2 (α− σρη − r + µ) /κ

)
. (31)

The second term in the square root of this equation is positive if equation (10) in the
main text holds (guaranteeing that the investment rate is positive when the firm faces no
financing frictions). Notably, if this term is positive, then equation (31) is negative. That
is, if ϵ increases, investment decreases. Thus, the firm invests more if the term structure
is downward sloping than if it is flat or, even more so, if it is upward sloping. The claim
in Proposition 1 follows. ⋄

Proof of Proposition 2 This proposition focuses on the case in which the firm is
asymmetrically exposed to long-term and short-term aggregate shocks, i.e., σAρA ̸= σY ρY .
As in the proof of Proposition 1, we use the following notation: ηL ≡ ηϵ and ηS ≡ η(1−ϵ),
with ϵ ∈ [0, 1]. The first derivative of the optimal investment rate (equation (9)) with
respect to ϵ satisfies:

∂l∗

∂ϵ
=ηρAσA

(
1− r − µ+ σAρAηϵ√

(r − µ+ σAρAηϵ)2 − 2 (α− σY ρY η(1− ϵ)− r + µ− σAρAηϵ) /κ

)

− η

κ

(ρAσA − ρY σY )√
(r − µ+ σAρAηϵ)2 − 2 (α− σY ρY η(1− ϵ)− r + µ− σAρAηϵ) /κ

. (32)

The first term on the right-hand side is negative, being analogous to the term in equation
(31). It then follows that if ρAσA ≥ ρY σY—i.e., if the firm is relatively more exposed
to aggregate long-term shocks than to short-term aggregate shocks—then the result in
Proposition 1 continues to hold, and the optimal investment rate decreases with the slope
of the term structure of risk prices.

Consider now the case in which the inequality ρAσA ≥ ρY σY does not hold. Equation
(32) can be rewritten as follows:

∂l∗

∂ϵ
=ηρAσA

(
1− r − µ+ σAρAηϵ+ 1/κ− ρY σY /(κρAσA)√

(r − µ+ σAρAηϵ+ 1/κ)2 − 2 (α− σY ρY η(1− ϵ) + 1/(2κ)) /κ

)
.

(33)

If the second term in parenthesis is smaller than one, then ∂l∗

∂ϵ
> 0. By calculation, we
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find that this is the case if the following inequality holds:

ρY σY ≥ ρAσA [1 + κ(r − µ+ ηρAσA)]−
√

ρ2Aσ
2
A

[
(1 + κ(r − µ+ ηρAσA))

2 − 1− 2ακ
]
.

That is, when this is the case, then ∂l∗

∂ϵ
> 0. Note that this inequality is more likely to

hold if α is smaller (i.e., if the firm is less profitable) or if µ is more negative (i.e., assets
depreciate more quickly). ⋄

A.3 Proof of the results in Section 4.2

We now derive firm value in the presence of financing frictions. Equation (13) gives:

Vm(a,m) = v′(c) Vmm(a,m) =
v′′(c)

a

Va(a,m) = v(c)− cv′(c) Vaa(a,m) =
c2

a
v′′(c)

Plugging these expressions back into equation (12) yields the scaled HJB equation (see
equation (14)). Differentiating equation (14) with respect to the investment rate gives
the following first-order condition:

[v(c)− v′(c)c]− v′(c)− κlv′(c) = 0.

Solving for this equation gives the expression for l(c) reported in equation (15). Substi-
tuting l(c) back into the HJB equation yields:

rv(c) =

[
µ+

1

κ

(
v(c)

v′(c)
− 1− c

)
− σAρAηL

]
[v(c)− v′(c)c] +

v′′(c)

2

(
σ2
Ac

2 + σ2
Y

)
+

[
α− σY ρY ηS − 1

κ

(
v(c)

v′(c)
− 1− c

)
− 1

2κ

(
v(c)

v′(c)
− 1− c

)2

+ (r − λ)c

]
v′(c)

and, by calculations, equation (16) follows. Scaled firm value v(c) is then solved subject to
the boundary conditions reported in Section 4.2, which are standard and can be derived
using arguments similar to Décamps et al. (2017).

Consider now firm value at the target payout threshold, C∗. Using conditions (17)
and (18) into equation (16) gives:

(r − µ+ σAρAηL) v(C
∗) =α− σY ρY ηS + (r − λ− µ+ σAρAηL)C

∗ +
1

2κ
[v(C∗)− C∗ − 1]2 .

As in Malamud and Zucchi (2019), define w ≡ v(C∗) − C∗ to obtain an expression for
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v(C∗) as a function of C∗. Substituting in the equation above, we get

(r − µ+ σAρAηL)w = α− σY ρY ηS − λC∗ +
1

2κ
(w2 − 2w + 1),

so we need to solve

1

2κ
w2 −

(
r − µ+ σAρAηL +

1

κ

)
w + α− σY ρY ηS − λC∗ +

1

2κ
= 0

which gives32

w = κ

r − µ+ σAρAηL +
1

κ
−

√(
r − µ+ σAρAηL +

1

κ

)2

− 2

κ

(
α− σY ρY ηS − λC∗ +

1

2κ

) .

and, thus, v(C∗) = w + C∗.

A.4 Proof of the results in Section 6

In this section, we derive firm value when the term structure varies with the business
cycle. Standard arguments imply that, in each state i = G,B (with i ̸= j), firm value
satisfies the following HJB equation:

rVi(a,m) = max
li

(µ+ li − σAρAηAi)aVia +
[(

α− σY ρY ηY i − li −
κ

2
l2i

)
a+ (r − λ)m

]
Vim

+
1

2
a2
(
σ2
AViaa + σ2

Y Vimm

)
+ πi (Vj(a,m)− Vi(a,m)) . (34)

Let us define the scaled value function in each state vi(c), with Vi(a,m) ≡ avi(c). Substi-
tuting this into equation (34) and dividing by a, we get

rvi(c) =max
li

(µ+ li − σAρAηAi) [vi(c)− v′i(c)c] +

[
α− σY ρY ηY i − li −

κl2i
2

+ (r − λ)c

]
v′i(c)

+
v′′i (c)

2

(
σ2
Ac

2 + σ2
Y

)
+ πi (vj(c)− vi(c)) . (35)

Differentiating the above equation with respect to li gives the optimal investment rate
reported in equation (24). Plugging li(c) back into equation (35) yields the following

32We choose the solution that is continuous in the limit in which the second term in the square bracket
tends to zero.
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system of ordinary differential equations:

(r − µ+ σAρAηAi) vi(c) = [α− σY ρY ηY i + (r − λ− µ+ σAρAηAi)c] v
′
i(c) (36)

+
v′′i (c)

2

(
σ2
Ac

2 + σ2
Y

)
+

1

2κ

[vi(c)− (1 + c)v′i(c)]
2

v′i(c)
+ πi [vj(c)− vi(c)] .

This equation is subject to boundary conditions that are similar to those in the one-state
model in Section 4. In each state, there exists a target payout threshold C∗

i above which
all excess cash is paid out to investors, i.e., v′i(C

∗
i ) = 1. This target level C∗

i satisfies the
super-contact condition in each state, v′′i (C

∗
i ) = 0. Suppose that the target cash level is

greater in the state i, C∗
i > C∗

j . Then, if the state switches from i to j while the cash-
to-asset ratio is in c ∈ [C∗

j , C
∗
i ], the firm pays a lumpy payout equal to c − C∗

j , meaning
that: v(C) = v(C∗

j ) + c− C∗
j c ∈ [C∗

j , C
∗
i ]. Furthermore, when the cash ratio decreases

sufficiently, the firm raises new equity.33 Denote by Ci ≥ 0 the issuance boundary in
state i. For any c ∈ [0, Ci], firm value satisfies the following boundary equation:34

vi(c) = vi(C∗i)− (1 + p)(C∗i − c)− f (37)

where C∗i denotes the post-issuance cash ratio that satisfies the following boundary con-
dition v′i(C∗i) = 1 + p. If the firm raise funds before the cash buffer is depleted in one
of the two states, it must be that v′i(Ci) = 1 + p in that state. Otherwise, the firm raise
fresh financing when it reaches zero (which implies that v′i(0) > 1 + p, meaning that it is
optimal to delay equity financing up to c = 0).

In each state, at the target cash level C∗
i , firm value satisfies

(r − µ+ σAρAηAi) vi(C
∗
i ) = [α− σY ρY ηY i + (r − λ− µ+ σAρAηAi)C

∗
i ]

+
1

2κ
[vi(C

∗
i )− (1 + C∗

i )]
2 + πi [vj(C

∗
i )− vi(C

∗
i )] ,

which boils down to

(r − µ+ σAρAηAi + πi)wi = [α− σY ρY ηY i − (πi + λ)C∗
i ] +

1

2κ

[
w2

i − 2wi + 1
]
+ πivj(C

∗
i ).

33For simplicity, we focus on the case in which liquidating is never preferred to raising fresh financing.
Equivalently, the left-hand side of equation (37) is always greater than the recovery rate of assets, ϕ.

34Because the firm faces the same issuance cost in the two states, heuristic arguments imply that it
should be optimal for the firm to raise funds when cash reserves are depleted. However, we cast the
problem in the general case in which we allow the firm to raise financing for a positive cash ratio. As we
show in the main text, the firm indeed issues new equity when the cash buffer is depleted.
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where we have defined wi ≡ vi(C
∗
i )− C∗

i . By calculations, we get

wi = κ

[
Bi −

√
B2

i −
2

κ

(
α− σY ρY ηY i − (πi + λ)C∗

i +
1

2κ
+ πivj(C∗

i )

)]

where we have defined Bi = r − µ+ σAρAηAi + πi +
1
κ
.

A.5 The model with short-term investment

In this section, we extend our baseline model by allowing the firm to engage in short-term
investment that can enhance the firm’s cash flow profitability. Namely, we assume that
cash flows are governed by the following dynamics:

dXt =AtdYt = At

[
ϑ(1 + st)dt+ σY dB̂t

]
(38)

=ϑ(1 + st)Atdt+ σYAt

(
ρY dB̃t +

√
1− ρ2Y dB̃

Y
t

)
. (39)

The interpretation of this equation is similar to (6), with the only difference that the
manager can boost the average cash flow by st by incurring a monetary cost that is
proportional to assets, Atgs(s), with

35

gs(s) =
κss

2

2
. (40)

where κs is a positive constant. That is, this investment does not entail an increase in the
firm’s assets (its capital stock) but it increases the firm’s profitability in the short-term.
Alternatively, this cost can be interpreted as effort, in which case the associated quadratic
cost is not necessarily monetary. Under these assumptions, the firm problem becomes

V (A,M) = sup
U,H,l,s,τ

EQ

[∫ τ

0

e−rt (dUt − dHt) + e−rτℓτ

]
,

i.e., there is an additional endogenous choice related to short-term investment.
Following similar argument as in the main version of the model, firm value satisfies the

following Hamilton-Jacobi-Bellman (HJB) equation in the cash retention region [0,M∗]:

max
l,s

(l + µ− σAρAηL)aVa +
[(

ϑ(1 + s)− σY ρY ηS − l − κ

2
l2 − κs

2
s2
)
a+ (r − λ)m

]
Vm

+
1

2
a2
(
σ2
AVaa + σ2

Y Vmm

)
= rV (a,m) (41)

35This specification implies that it is increasingly more costly to improve the profitability of cash flows
when the firm is larger.
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which admits an interpretation similar to equation (12). Substituting equation (13) into
equation (12) and dividing by a gives:

max
l,s

(µ+ l − σAρAηL) [v(c)− v′(c)c] +

[
ϑ(1 + s)− σY ρY ηS − l − κl2

2
− κss

2

2
+ (r − λ)c

]
v′(c)

+
v′′(c)

2

(
σ2
Ac

2 + σ2
Y

)
= rv(c) (42)

Differentiating the above equation with respect to l gives the optimal firm’s investment
rate in equation (15). In turn, the firm’s optimal short-term investment is given by

s =
ϑ

κs

. (43)

Plugging the optimal short- and long-term investment rate back into equation (42) yields:

(r − µ+ σAρAηL) v(c) =

[
ϑ

(
1 +

ϑ

2κs

)
− σY ρY ηS + (r − λ− µ+ σAρAηL)c

]
v′(c)

+
v′′(c)

2

(
σ2
Ac

2 + σ2
Y

)
+

1

2κ

[v(c)− (1 + c)v′(c)]2

v′(c)

which is solved subject to the same boundary conditions as in the baseline model.
Figure 10 shows our main result. We use the parameterization in Table 1 and, in

addition, assume that κs = κl and ϑ = 0.194, so that the resulting cash flow drift
stemming from the optimization over short-term investment is comparable to its value in
our baseline parameterization.36 Figure 10 shows that the firm focuses increasingly more
on long-term investment as cash reserves increase and financial constraints are relaxed.
Moreover, and crucially, the balance between short- and long-term investment shifts as the
slope of the term structure changes. Compared with the case in which the term structure
is flat, the firm tilts its focus towards long-term investment when the term structure is
decreasing—i.e., the ratio of long-short to total investment rises. The opposite is true
when the term structure is increasing, in which case the firms shifts its focus to short-term
investment. These results are consistent with the firm extending (shortening) its horizon
when the term structure is decreasing (increasing). If the term structure is flat, the ratio
of long to total investment goes from 28% when the cash reserves are almost depleted to
57% when the firm holds its target cash level. If the term structure is increasing, this
ratio goes from 21% when the cash reserves are close to zero to 54% when the firm holds
its target cash level. If the term structure is decreasing, the ratio goes from 35% to 59%.

36I.e., ϑ+ ϑ2

2κs
= 0.2006 which is the value of the cash flow drift α in the baseline version of our model.
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Anderson, C., and L. Garcia-Feijóo. 2006. “Empirical Evidence on Capital Investment,
Growth Options, and Security Returns.” Journal of Finance 61:171–194.

Ang, A., and J. Liu. 2004. “How to Discount Cashflows with Time-Varying Expected
Returns.” Journal of Finance 59:2745–2783.

Asker, J., J. Farre-Mensa, and A. Ljungqvist. 2015. “Corporate Investment and Stock
Market Listing: A Puzzle?” Review of Financial Studies 28:342–390.

Bansal, R., R. Dittmar, and C. Lundblad. 2005. “Consumption, Dividends, and the Cross
Section of Equity Returns.” Journal of Finance 60:1639–1672.

Bansal, R., S. Miller, D. Song, and A. Yaron. 2021. “The Term Structure of Equity Risk
Premia.” Journal of Financial Economics 142:1209–1228.

Bansal, R., and A. Yaron. 2004. “Risks for the Long Run: A Potential Resolution of
Asset Pricing Puzzle.” Journal of Finance 59:1481–1509.

Bolton, P., H. Chen, and N. Wang. 2013. “Market Timing, Investment, and Risk Man-
agement.” Journal of Financial Economics 109:40–62.

—. 2011. “A Unified Theory of Tobin’s q, Corporate Investment, and Financing.” Journal
of Finance 66:1545–1578.
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Table 1: Baseline parameters.

Parameter Description Value

r Risk-free rate 0.045

λ Opportunity cost of cash 0.01

µ Growth (depreciation) rate of assets -0.105

κ Adjustment cost coefficient 2.85

α Mean cash flow rate 0.20

σA Volatility of persistent shocks {0.12,0.18}
σY Volatility of transitory shocks 0.12

ϕ Recovery rate in liquidation 0.90

p Proportional financing cost 0.06

f Fixed financing cost 0.002

ρA Firm’s correlation with persistent aggregate shocks 0.40

ρY Firm’s correlation with transitory aggregate shocks 0.40

ηS + ηL Sum of the market price of persistent and transitory shocks 0.40

55



Table 2: Refinancing, payouts, disinvestment, and firm value. The table re-
ports the optimal issuance size C∗, the target cash level C∗, the threshold C0 below which
the firm disinvests, and firm value at c = 0 (v(0)) as a function of the gap between the
market price of long-term and short-term shocks (by keeping the sum of the two risk
prices constant), which in turn determines whether the slope of the term structure of
market risk prices is increasing (denoted as I), flat (denoted as F), or decreasing (denoted
as D). The top panel focuses on the case σA = σY = 0.12, the middle panel assumes that
f = 0.01, and the bottom panel focuses on the case σA = 0.18 > σY = 0.12.

Slope ηL − ηS C∗ C∗ C0 v(0)

Refinancing

σY = σA = 0.12

I 0.40 0.045 0.205 n.a. 1.213

I 0.20 0.046 0.213 n.a. 1.225

F 0.00 0.048 0.221 n.a. 1.238

D -0.20 0.050 0.232 n.a. 1.254

D -0.40 0.053 0.245 n.a. 1.274

f = 0.01, σY = σA = 0.12

I 0.40 0.081 0.240 0.030 1.199

I 0.20 0.083 0.247 0.027 1.210

F 0.00 0.087 0.257 0.025 1.223

D -0.20 0.092 0.271 0.022 1.237

D -0.40 0.105 0.293 0.020 1.254

σA = 0.18 > σY = 0.12

I 0.40 0.040 0.183 0.016 1.117

I 0.20 0.042 0.191 0.008 1.143

F 0.00 0.044 0.203 n.a. 1.174

D -0.20 0.047 0.219 n.a. 1.214

D -0.40 0.053 0.248 n.a. 1.273
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Table 3: Policy distortions. The table reports the distortions associated with ignoring
the slope of the term structure of risk prices—i.e., assuming it is flat when actually is
increasing (denoted as I) or decreasing (denoted as D)—on firm’s investment (gauged
at the target cash level, l(C∗)), target cash (C∗), and the size of equity issuance (C∗).
The top panels focus on the refinancing case, whereas the bottom panels focus on the
liquidation case (for both σA = σY = 0.12 and σA = 0.18 > σY = 0.12).

ηL − ηS l(C∗) C∗ C∗

Refinancing

σY = σA = 0.12

I 0.40 11.40% 7.61% 7.39%

I 0.30 8.65% 5.84% 5.68%

I 0.20 5.84% 4.00% 3.88%

I 0.10 2.96% 2.05% 1.99%

D -0.10 -3.05% -2.18% -2.12%

D -0.20 -6.22% -4.52% -4.38%

D -0.30 -9.53% -7.06% -6.80%

D -0.40 -13.03% -9.85% -9.44%

σA = 0.18 > σY = 0.12

I 0.40 46.58% 10.80% 10.04%

I 0.30 33.22% 8.43% 7.86%

I 0.20 21.15% 5.89% 5.58%

I 0.10 10.14% 3.15% 3.23%

D -0.10 -9.47% -3.47% -3.27%

D -0.20 -18.43% -7.46% -7.06%

D -0.30 -27.11% -12.23% -11.59%

D -0.40 -35.82% -18.26% -17.18%

57



0 0.1 0.2

0.02

0.04

0.06

0.08

0.1

c

l(
c)

σA = σY

increasing flat decreasing

0 0.1 0.2
−0.02

0

0.02

0.04

0.06

0.08

0.1

c

l(
c)

σA > σY

increasing flat decreasing

Figure 1: Optimal investment rate. The figure shows the optimal investment rate
as a function of the cash ratio c ∈ [0, C∗] when varying the slope of the term structure
of market risk prices. The increasing case features ηS = 0.05 < ηL = 0.35, the flat
case features ηS = ηL = 0.2, and the decreasing case features ηS = 0.35 > ηL = 0.05.
The left panel focuses on the case σA = σY = 0.12, whereas the right panel assumes
σA = 0.18 > σY = 0.12.
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Figure 2: Varying the steepness of the slope. The top panel shows the firm’s
optimal investment rate as a function of the cash ratio c ∈ [0, C∗] when the term structure
of risk prices is flat (solid line) and increasing (dashed and dotted lines). The bottom
panel shows firm value and investment rate when the term structure is flat (solid line) and
decreasing (dashed and dotted lines). The left panel depicts the case σA = σY , whereas
the right panel depicts the case σA > σY .
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Figure 3: The value of cash. The figure shows the marginal value of cash as a
function of the cash ratio c ∈ [0, C∗] when varying the slope of the term structure of
market risk prices. The increasing case features ηS = 0.05 < ηL = 0.35, the flat case
features ηS = ηL = 0.2, and the decreasing case features ηS = 0.35 > ηL = 0.05.
The left panel focuses on the case σA = σY = 0.12, whereas the right panel assumes
σA = 0.18 > σY = 0.12.
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Figure 4: Investment and value of cash with liquidation. The figure shows
the firm’s optimal investment rate l(c) (left panel) and the marginal value of cash v′(c)
(right panel) as a function of the cash ratio c ∈ [0, C∗] when varying the slope of the term
structure of market risk prices. The increasing case features ηS = 0.05 < ηL = 0.35, the
flat case features ηS = ηL = 0.2, and the decreasing case features ηS = 0.35 > ηL = 0.05.
We consider the case σA = 0.18 > σY = 0.12.
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Figure 6: Exposure to short-term shocks and firm characteristics. The
figure represents the optimal investment rate as a function of the cash ratio c ∈ [0, C∗].
We assume that ρY = 0.45 and ρA = 0.4 and σY = σA = 0.12, so that σY ρY > σAρA.
In the top panel, we vary firm profitability α, whereas in the bottom panel we vary the
depreciation rate of assets µ.
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Figure 9: Time-variation in risk prices. The top panel represent the optimal in-
vestment rate as a function of the cash ratio c ∈ [0, C∗

i ] when the slope of the term
structure is procyclical. In the left panel, we set ηY G < ηAG = ηAB < ηY B, whereas in the
right panel we continue to assume that the slope is procyclical but additionally impose
ηY G + ηAG = ηY B + ηAB = 0.6. The bottom panel represent the case in which the term
structure is countercyclical. In the left panel, we set ηAG < ηY G = ηY B < ηAB, whereas in
the right panel we continue to assume that the slope is countercyclical but additionally
impose ηY G + ηAG = ηY B + ηAB = 0.6.
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Figure 10: Long- vs short-term investment. The figure shows the ratio of long-
term investment to total investment (short-term plus long-term) as a function of the cash
ratio c ∈ [0, C∗] when varying the slope of the term structure of market risk prices. The
increasing case features ηY = 0.05 < ηA = 0.35, the flat case features ηY = ηA = 0.2, and
the decreasing case features ηY = 0.35 > ηA = 0.05. We focus on the case σA = σY = 0.12.
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