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Beyond Peers: Cross-Industry Competition
and Strategic Financing

Abstract

Corporate financial leverage within competition networks is determined by both direct and
indirect competitors. Using data on firms’ self-reported competitors, we identify eleven
stable competition communities within the U.S. economy, where firms are grouped into
communities based on competitive interactions both within and across industries. We find
a strong complementarity between a firm’s leverage and that of its community members,
consistent with strategic interactions with both immediate peers and chain effects from
the propagation of shocks affecting indirect peers. To achieve identification, we employ a
granular instrumental variable approach. Our results highlight that firms’ financial strategies
are shaped not only by direct competition but also by the broader competitive environment.

JEL classification: G31, G32, L13

Key words: capital structure, strategic competition, financial complementarity, competitor
networks



1 Introduction

Understanding the determinants of corporate financial leverage has long been a central focus

in finance. Traditionally, research has emphasized firm-specific factors such as profitabil-

ity, asset structure, growth opportunities, and market conditions as the primary drivers of

leverage decisions (Titman and Wessels 1988, Rajan and Zingales 1995). However, in in-

creasingly interconnected markets, where firms do not operate in isolation but rather within

complex networks of competitors, the strategic interactions between firms have emerged as

critical determinants of financial behavior (Leary and Roberts 2014, Hoberg and Phillips

2016, Grieser et al. 2022). In this paper, we explore the role of these competitive dynamics

by investigating how firms’ leverage decisions are influenced by their position within what

we term “competition communities.”

Competition communities are groups of firms that are linked through direct and indirect

competition, often spanning multiple industries. Unlike traditional industry classifications,

these communities reflect the actual competitive landscape where firms face strategic inter-

actions not just with direct competitors, but also with firms in related markets that shape

the competitive environment. Leveraging data on firms’ self-declared competitors, we ap-

ply a machine-learning approach to identify eleven stable competition communities in the

U.S. economy. These communities provide a novel concept through which we examine how

financial decisions are affected by and propagate through networks of competing firms.

Our study contributes to the literature on competition and finance by documenting novel

facts about the propagation of financial shocks within these competition communities. We

show that a firm’s leverage decisions are influenced not only by its own characteristics but

also by the characteristics and leverage choices of its direct competitors, indirect competitors,

and the broader community. Remarkably, the influence of the broader community on a firm’s

leverage is strongly positive and economically significant, with a magnitude comparable to

that of direct competitors. These findings are consistent with models of product market

competition where financing decisions act as strategic complements, suggesting a potential
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channel through which financial shocks can be amplified across the economy due to product

market interactions.

Empirically, we utilize the Factset Revere dataset, covering the period from April 2003 to

August 2018, to identify firms’ competitors and define competitor networks and communities

and document their evolution over time. Figure 1 illustrates the competitor network within

the U.S. economy for a specific year, where the colors represent different SIC industry classi-

fications. We depict all Compustat firms matched with Factset Revere. The figure illustrates

that firms compete in a complex network of direct and indirect competitive links. However, it

is also apparent that traditional industry classifications do not properly capture competition

networks and the groups of firms that form a community. To classify communities of firms

within this network, we employ a widely accepted machine-learning approach that applies

a dynamic network community detection algorithm. This method allows us to classify firms

into competition communities at each point in time and track these communities over the

study period. Although we observe the formation and dissipation of various communities, we

consistently identify eleven permanent competition communities within the U.S. economy.

An analysis of the competition communities reveals distinct clusters of firms that are

interconnected through competitive relationships across various industries. These commu-

nities range from “Innovative Chemical and Medical Services,” dominated by firms in the

chemicals and medical sectors with high R&D costs and growth potential, to “High-Tech

Manufacturing and Services,” where firms in electronics and machinery exhibit significant

capital investment needs. Other communities include “Consumer Retail and Apparel,” fo-

cused on consumer-driven industries with higher leverage due to inventory financing, and

“Health and Professional Services,” where service-oriented firms display moderate growth po-

tential. The “Capital-Intensive Energy and Chemicals” community features firms in oil, gas,

and chemical industries with high asset tangibility and leverage. Each community reflects

unique financial characteristics and industrial compositions.

Over the sample period, the competition communities exhibit notable stability, consis-
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Figure 1: Competition networks and traditional industry classification
The figure documents the relation between competition network and industry classification. Firms are

indicated by nodes. Every pair of nodes linked by one direct edge is a pair of direct competitors. The colors

of nodes and edges indicate the SIC2 classification for each firm.

tently covering a large portion of the economy despite the dynamic nature of market entries,

exits, and changing competitive links. While the overall number of communities fluctuates

over time, the core composition of these major communities remains relatively constant,

indicating persistent competitive structures. However, the evolution of these communities

is influenced by factors such as technological innovations and market disruptions, which can

lead to shifts in the composition and connectivity of firms (Hoberg and Phillips 2024).

To examine how competition communities influence firms’ financial decision-making, we

formulate and test three hypotheses, each designed to assess the extent to which firms’

leverage choices are shaped by their internal characteristics, (in)direct competitors, and the

broader competitive environment within their community. Our first hypothesis explores

whether community leverage—the average leverage within a firm’s competition commu-

nity—affects a firm’s leverage decisions. Community leverage should have little to no impact

under the assumption that firms primarily focus on their immediate strategic needs and
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direct competitors. However, we find that community leverage does play a significant role.

Both regression and IV results show that the impact of community leverage on a firm’s fi-

nancial decisions is strongly positive and economically significant, indicating that firms align

their leverage with the broader community. A one standard deviation increase in community

leverage is associated with an increase in firm leverage by 4.5 to 6.3 percentage points.

The second hypothesis addresses the relative influence of direct competitors versus the

broader community. One might expect that direct competitors exert a stronger influence

on a firm’s leverage, given their immediate impact on market share and competitiveness.

While our results confirm that direct competitors are indeed influential (Leary and Roberts

2014), they also demonstrate that the effect of the broader community on a firm’s leverage

is of comparable, if not larger magnitude. Based on our GIV estimates, a one standard

deviation increase in competitor leverage is associated with a 2.3 percentage points increase,

compared to 3.3 percentage points for the community. This suggests that firms consider

both the immediate actions of their direct competitors and the overall financial behavior of

their community when making leverage decisions.

The third hypothesis distinguishes between the influence of direct and indirect competi-

tors on a firm’s financial decisions. We hypothesize that direct competitors, who operate in

the same market segment, are the primary drivers of leverage decisions. However, the results

indicate that indirect competitors, although not directly in the same market segment, have

significant impact on a firm’s leverage choices. Direct and indirect peers have about the

same impact. This finding highlights the importance of considering the entire competitive

network, including indirect competitors in the same community.

To obtain identification of the community effect, we exploit the fact that community

and overall economy are distinct concepts. Hence, our identification strategy is immune to

confounding market-wide shocks. In all specifications, we include firm fixed effects and time

fixed effects interacted with industry fixed effects. All confounders would have to active at

the firm-quarter level. To address this alternative, we employ a granular IV approach. In the
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spirit of Bartik (1991) and Gabaix and Koijen (2024), we construct a granular instrumental

variable that uses as ‘share’ (i.e., weight/importance) the network centrality within the firm’s

community relative to the economy and as ‘shift’ (i.e., shock) the idiosyncratic equity return

of the firm (as in Leary and Roberts (2014)). The exclusion restriction here is that the

idiosyncratic equity return is uncorrelated with the compound error, which is the share-

weighted average across firms in the unexplained component of firm-level leverage and, in

particular, the error term of the firm most exposed to that shock.

Our findings have important implications for understanding the propagation of financial

shocks within competition networks. The significant influence of competition communities

on firms’ leverage decisions suggests that financial shocks can propagate more widely and

deeply through the economy than previously thought, especially given the broadened scope

of firms documented in Hoberg and Phillips (2024). When a financial shock affects a firm

or a group of firms within a competition community, the interconnected nature of these

communities means that the shock influences not just the directly affected firms but also

others within the same community. Since firms tend to align their leverage with that of

their community, a shock that alters the leverage decisions of key firms can ripple through

the entire community, amplifying its effects. Moreover, the comparable influence of direct

competitors and the broader community suggests that financial shocks can spread both

through direct competitive relationships and through the broader network structure.

Literature. Peer effects on firms’ financial leverage, particularly among direct competitors,

have been widely studied in the finance literature. The empirical results of our paper are

closest to Leary and Roberts (2014) and Grieser et al. (2022), but we extend prior work

in several important ways. Leary and Roberts (2014) focus on the role of peers, which

is identified via industry classification only. Grieser et al. (2022) uses text-based product

description similarity to identify competitors and rely on a reduced-form spatial model to

assess how direct competitors’ leverage (linearly) affects firm leverage, complementing the
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work by Leary and Roberts (2014). Apart from using a different source of network data,

we differentiate from them with our novel notion of community and by highlighting the

importance of network neighbors beyond direct competitors or traditional peers.

Complementing this literature, we focus on indirect peers and identify endogenous net-

work effects in the spirit of Manski (1993), originating in social network analysis, where the

policy variable of a firm varies with the behavior of the same policy variable of its group, and

distinguish these from contextual effects, where the propensity of a firm to behave varies with

the exogenous characteristics of the group. To do so, we adopt and extend the exogenous

firm characteristics setting of Rajan and Zingales (1995) who examines the determinants

of financing decisions for a firm in isolation. Manski (1993) highlights the reflection prob-

lem in the analysis of peer effects within the economics literature (see also Bramoullé et al.

(2009) and subsequent work). Our identification of community effects relies on the granular

instrumental variables approach introduced by Gabaix and Koijen (2024).

Our paper also relates to the broader capital structure literature. Bradley et al. (1984)

document the importance of industry classification in explaining variation in capital struc-

ture. MacKay and Phillips (2005) examine the importance of product market characteristics

for firm financing within markets. Frank and Goyal (2009) examine the determinants of

capital structure and highlight the role of peer effects in shaping firms’ financial leverage,

particularly within competitive environments. Leary and Roberts (2010) provide a compre-

hensive analysis of how firms adjust their financial leverage in response to the actions of peer

firms, particularly in industries where competition is intense. Based on survey evidence,

Graham and Harvey (2001) report that CEOs identify the behavior of competitors as an

key determinant for financing decisions. Frésard and Phillips (2022) survey the literature on

competition and corporate financing.

There is a large theoretical literature on strategic interactions and financing decisions pi-

oneered by Brander and Lewis (1986) and Maksimovic (1988).1 This research strand shows

1Brander and Lewis (1986) show that debt financing can commit firms to aggressive output strategies in
a duopoly, thus impacting market competition. Maksimovic (1988) examines how capital structure affects
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that firms take into account the leverage choices of their competitors when making capital

structure decisions in stylized competitive environments. Recent contributions by Bramoullé

et al. (2014) and Choné and Linnemer (2020) examine how to account for strategic interac-

tions in a general competitive environment characterised by a network of firms. Bramoullé

et al. (2020) survey the literature on peer effects in networks.

Hoberg et al. (2014), Frésard et al. (2024), and Hoberg and Phillips (2024) show the im-

portance of measuring the competitive environment in a granular way. Hoberg and Phillips

(2010, 2016) use a novel text-based approach to identify network industries and endogenous

product differentiation. They present evidence that firms consider the financial policies of

direct competitors when making their own capital structure decisions, reflecting strong peer

effects. All these papers provide a foundation for understanding how peer effects among di-

rect competitors influence firms’ financial leverage decisions. However, they largely abstract

from indirect competitors which is what our paper focuses on and which can also drive peer

effects and shock propagation in corporate finance. The community detection algorithm that

we employ is borrowed from the social network analysis literature in computer science.2

A large literature focuses on supply chain linkages and the propagation of productiv-

ity shocks (Barrot and Sauvagnat 2016, Carvalho et al. 2021, Taschereau-Dumouchel 2024,

Nunez and Subramanian 2024) or trade credit (Gofman and Wu 2021). By contrast, we

study competition networks and the propagation of financial shocks.

product market strategy in an oligopolistic market. Showalter (1995) investigates how Cournot vs. Bertrand
competition affects strategic outcomes. Bolton and Scharfstein (1990) analyze how financial contracts can
be used strategically to influence competitive outcomes in the context of predation.

2Girvan and Newman (2002) has pioneered network community detection. Since then, community de-
tection methods on static networks have grown in different directions. Led by Newman and Girvan (2004)
and Clauset (2005), one stream involves defining and maximizing a quality function that scores a partition.
The classic quality function that we apply is modularity (Newman and Girvan 2004), which was shown to
be NP-hard by Brandes et al. (2006). Consequently, a series of fast approximation algorithms has been
proposed, with Blondel et al. (2008) being one of the most successful static methods. Perturbations in the
network topology due to the dynamic evolution of nodes and edges present challenges and have given rise to
a dynamic community detection literature. Aynaud and Guillaume (2010) extend the well-accepted method
by Blondel et al. (2008), and this is the approach we apply to our dynamic firm networks.
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2 Motivation and Hypotheses

While the empirical literature has focused on direct peer effects in firms’ capital structure

decisions, theoretical network models of product market competition and financial decisions

highlight that competition takes places in networks comprising direct and indirect peers,

giving rise to competition communities. This section provides a motivation for our empirical

analysis and formulates several testable hypotheses.

2.1 Motivation

Competition networks emerge from the interactions between firms operating within the same

or related markets. These networks represent the interconnected relationships of competition

where firms influence and are influenced by each other’s product market and financial strate-

gies. In markets where products are similar, firms compete more directly, fostering dense

competition networks. Conversely, when products are differentiated, competition networks

become more sparse and segmented due to some firms being more specialized while others

operate in multiple segments.

Competition networks, through their interconnected nature, lead to the formation of

communities where firms are related in terms of market focus, competition, and strategic

interactions. Understanding these communities is crucial for analyzing product markets and

financial conditions and exploring the propagation of shocks. It is therefore important to

identify how many competition communities exist in the economy, how they are comprised

of firms that are direct or indirect competitors, and whether there is complementarity or

substitutability between a firm’s leverage and the leverage of its community members. In

the former case, strategic interactions with immediate peers can lead to chain effects from

the propagation of productivity and financial shocks.

To give an illustration, start with companies (A, B, and C) that compete directly within

the same industry, such as the automotive industry. These firms form a simple competition
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network where each company is linked through their rivalry in producing cars. As more

companies enter the network, but operate in a different yet related industry, such as auto

loan financing (D, E, and F) or, alternatively, electric vehicle components (F, G, and H), the

network expands and diversifies. Industry 1 consists of companies A, B, and C, which are

closely connected by their competition within the traditional automotive sector. Industry 2

(3) includes D, E, F (F, G, H), which are more closely connected by their competition in the

lending and electrical components industry.3 Despite operating in different industries, there

are cross-industry links, as they share the same competitors A-C and, in addition, there may

be competition on customers or technology development. These cross-industry interactions

create a broader competition network, but across this network, a single community emerges

that encompasses all firms A through H.

Competition communities can significantly influence firms’ financial choices because the

competitive environment affects not only product market strategies but also the optimal use

of financial resources. When firms operate within a competitive community, they are not

only influenced by their own goals but also by the actions and strategies of their peers. This

interconnectedness can lead to either a convergence or divergence of financial strategies, as

firms are pressured to predate or accommodate the financial decisions of their competitors

to maintain competitive parity. For instance, if one firm in the community increases its

leverage to commit itself to an aggressive product market strategy or to finance expansion or

innovation, others may follow suit to avoid falling behind, even if it involves greater financial

risk. To the extent that firm A competes directly with firms D and H, while D and H are not

direct competitors, the joint consideration of firm A’s product market and financial policies

can lead D and H to pursue similar leverage decisions—creating a chain of propagation of

productivity and financial shocks within competition networks.

3Note that company F is active in both segments.
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2.2 Hypotheses

To explore how productivity and financial shocks propagate within competition networks,

we formulate several hypotheses on the determinants of firms’ leverage choices.

Our first hypothesis is grounded in the traditional view that a firm’s financial decisions,

particularly regarding leverage, are primarily driven by its own strategic needs, direct com-

petitors, and internal factors such as profitability, risk tolerance, and growth opportunities.

If a firm focuses on these internal and immediate competitive pressures, the average leverage

within its broader community might have little to no impact on its own leverage decisions.

This could occur if the firm perceives its situation as unique or if the community’s influence

is diluted across a diverse group of firms with varying strategies.

The alternative is that community leverage affects a firm’s leverage. This alternate

hypothesis suggests that firms are influenced by the financial behavior of their community

as a whole. In this novel view, firms align their leverage with community averages due to

shared economic conditions or the desire to maintain competitive parity within the broader

industry network. This leads to a convergence of financial strategies within the community,

but not the overall economy.

Hypothesis 1. Community leverage does not affect a firm’s leverage.

Our second hypothesis posits that direct competitors exert a stronger influence on a

firm’s financial choices than the broader community does (Leary and Roberts 2014, Grieser

et al. 2022). The reason may be that firms are more likely to monitor and react to the

actions of their direct competitors, who have a more immediate impact on market share,

pricing strategies, and overall competitiveness. Direct competitors are often operating in the

same market, facing similar customer demands and cost structures, making their financial

strategies particularly relevant.

The alternative is that community leverage matters as much or even more than competi-

tors’ leverage for a firm’s leverage. This alternative hypothesis suggests that the broader

11



community’s financial behavior might provide a valuable signal of strategic interactions in

competition networks and a signal for firms, especially if the community represents a compre-

hensive picture of the competitive environment. In this case, firms might prioritize aligning

with the community average to commit to product market strategies, mitigate risk, or main-

tain industry standards.

Hypothesis 2. Competitors’ leverage matters more than the community leverage for a firm’s

leverage.

Our third hypothesis is based on the idea that direct competitors, who compete in the

same market segment, product lines, or geographical areas, have the most significant impact

on a firm’s financial decisions. The rationale is that these competitors are more visible

and their financial strategies, such as leverage decisions, directly influence a firm’s market

position. Firms may feel more immediate competitive pressure to match or counter the

leverage levels of these direct rivals to protect or enhance their market share (Brander and

Lewis 1986).

The alternative is that indirect competitors are equally or more important than direct

competitors in determining a firm’s leverage. This alternative hypothesis suggests that

indirect competitors, though not directly competing in the same market segment, might still

significantly influence a firm’s financial decisions for strategic reasons.

Hypothesis 3. Direct competitors are more important than indirect competitors in deter-

mining a firm’s leverage.

Each of these hypotheses reflects different perspectives on how firms in competition com-

munities prioritize various sources of influence when making financial decisions, particularly

regarding leverage. By testing these hypotheses, we provide insights into the relative impor-

tance of direct competitors versus the broader competitive environment in shaping corporate

financial strategies. Before doing so, we introduce the data and provide evidence on cross-

industry competition networks in the U.S. economy.
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3 Evidence on Cross-Industry Competition Networks

In this section, we provide novel empirical evidence on competition networks within the

U.S. economy. Using granular data on firms’ self-declared competitors, we map out competi-

tion networks among all publicly listed firms that extend both within and across industry. We

also document the prevalence of cross-industry interactions among clusters of competitors,

which extend beyond standard industry classifications and traditional peers.

3.1 Data

Our main data source is the FactSet Revere Supply Chain Relationships database over

the period from April 2003 to August 2018, which provides monthly updated information

about the business relationships and interconnections between firms. We merge the Revere

data with the Compustat North America dataset by CUSIP identifier to obtain quarterly

fundamental variables for each firm.

The Revere dataset classifies the firm-level relationships into four types: competitor,

partner, customer, and supplier. It covers the most comprehensive relationship network that

is currently available to practitioners. It includes relationships disclosed by either one of

the two firms in a relationship (or by both), with the start and end monthly dates for each

relationship. FactSet’s analysts collect and monitor information from firms’ public financial

filings (e.g., 10-K, 10-Q, and 8-K reports), financial statements, investor presentations, web-

sites, corporate action announcements, and press releases. Importantly for our analysis, if

firm A reports firm B as its competitor, a mutual competitor relationship is identified and

we treat the competition relationship symmetrically.4

To clean the Revere dataset, we remove uninformative relationships where either the

source or target firm is missing. We combine multiple same-class relationships between

the same pair of firms over different time periods into one continuous relationship if the

4Similarly, if firm A reports firm B as its supplier, firm A is naturally identified as firm B’s customer. We
do not use this customer-supplier data for the purpose of this study.
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time gap between two consecutive relationships is not longer than 4 quarters. We drop

duplicate relationships when the valid period falls within the time period of a longer same-

class relationship between the same pair of firms, and remove firms that are private or for

which fundamental data is not available from Compustat North America for the period

relevant for measuring relationships.

In the Compustat data, we exclude utilities firms (SIC code 4000–4999), financial firms

(SIC code 6000–6999), and international affairs non-operating establishments (SIC code

>9000) as well as any firm with missing SIC code. We exclude very small firms with total

assets that are less than 5 millions or sales are zero. We exclude observations with missing or

invalid (negative) total asset, sales, and total liabilities. Last, we exclude observations with

missing data required to calculate market-to-book ratio, return on asset, market leverage,

and tangibility. Data are winsorized for each quarter at the 1% and 99% level. Table 1

reports the definitions of the variables used in the analysis.

Our merged Revere-Compustat sample has 5,126 firms of which 4,762 report at least

one competitor, and it covers 72,508 competitor relationships over 62 quarters for a total

of 120,256 observations. Table 2 reports summary statistics on the competitor network and

all relevant variables used in the empirical analysis. Panel A provides summary statistics of

the variables used in the empirical analysis. The community variables are the average of the

winsorized firm-level variables of the firms in each community. The competitors variables are

the weighted average (according to adjacency matrices) of the winsorized firm-level variables

of the competitor firms. No further winsorization is done on the derived variables.

Table 2, Panel B provides features of the network used in the regression analysis. The

number of communities excludes the communities of less than four firms. Nodes in commu-

nity measures the average number of firms (over time) in each community. We report its

average, standard deviation, and other distributional statistics across communities.

Table 2, Panel C reports the number of firms and links in the Revere data, only involving

the firms with data available in Compustat after all cleaning steps. The number of competi-
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tion links rises from 6,241 in 2003 to 21,464 in 2017, and then declines to 19,205 by the end

of our sample. The second column shows that the number of firms rises from 1,765 in 2003

to 3,580 in 2017, and then declines to 3,378 by the end of our sample.

3.2 Identifying competition networks and communities

We focus our analysis on the notion of competition community, borrowing the concept from

the social network literature in computer science. In this field, large networks are decomposed

into sub-units to help discover unknown functional modules in complex networks. In our

context, we define a competition community as a group of firms that exhibit dense connec-

tions among their members while maintaining relatively sparse connections with companies

outside their group. Consequently, the notion of community is not constrained to merely the

set of directly related competitors of a firm, let alone to standard industry classifications.

For example, two firms sharing the same industry classification but only distantly or sparsely

connected would not be classified into the same community. Furthermore, two firms that

directly compete with each other but are more densely connected and interact with other

sets of firms may be identified as belonging to separate communities.

In addition, as firms enter and exit the market both the competition links among firms and

the number of existing nodes in the competition network change over time. Consequently,

classifying firms based on static graphs for separate time periods cannot identify persistent

communities present in the U.S. economy. In our context, communities may merge, split,

appear, or disappear in response to the dynamic changes in nodes and links. Using static

methods, we cannot determine whether the community in one time period is the same

community in a subsequent period.

To identify competition communities in our data, we borrow from the machine-learning

literature and apply a dynamic community detection framework that modifies a well-accepted

static community detection algorithm (Blondel et al. 2008) to track network evolution over

time using a rolling window approach (Aynaud and Guillaume 2010). In this setup, the
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algorithm seeks a proper partition of the nodes, meaning no overlapping communities and

no node belonging to more than one community5. A quality function is defined to assign a

score to each partition, with the best partition being the one that maximizes this quality

function. The function we use is modularity, which was introduced conceptually by Newman

and Girvan (2004) and is defined below for each graph.

Q =
1

2m

N∑
i=1

N∑
j=1

[
Aij −

kikj
2m

]
δ(ci, cj),

where N is the total number of nodes in the graph, Aij represents the edge strength (weight)

between nodes i and j as defined in the adjacency matrix6, ki denotes the sum of the weights

of the edges attached to node i, ci represents the community to which node i belongs, the

Kronecker delta function δ(ci, cj) equals 1 if nodes i and j are in the same community (ci = cj)

and 0 otherwise, and m = 1
2

∑
ij Aij. The modularity value of a partition ranges from −1 to

1. Given a partition of the network, this quantity calculates the actual fraction of edges that

connect two nodes of the same community (i.e., the probability that two nodes classified

into the same community by the partition are connected) minus the expected fraction of

edges that would connect the two nodes when connections between them are random (i.e.,

the expected probability of connection). Essentially, it quantifies the ratio of the density of

links within communities relative to the density of links between communities.

The exact optimization of modularity is NP-hard (computationally intractable), so only

fast approximation algorithms can provide feasible solutions. We refer readers to the original

paper by Blondel et al. (2008) for a complete explanation of their hierarchical greedy algo-

rithm (Louvain Method) for solving this optimization, where the computational complexity

is close to linear in data size. Appendix A provides a brief description of the algorithm.

5In the real world, a community might not disappear instantaneously but could be slowly absorbed by
others. This type of transformation remains a challenge for the literature, and the method we apply in this
paper does not yet address this issue.

6In our work, edges are assumed to be equal-weighted due to the lack of precise information about the
strength of competition. Hence, Aij equals one if i and j are directly linked and zero otherwise.
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Figure 2: Competition network, industry classification, and cross-industry communities
The figure documents the relation between competition network and cross-industry firm communities. Firms

are indicated by nodes. Every pair of nodes linked by one direct edge is a pair of direct competitors. The

colors of nodes and edges indicate the cross-industry firm communities.

3.3 Competition communities in the U.S. economy

Over the sample period from April 2003 to August 2018, we identify a combined total of

over 150 competition communities. Among those, many communities exhibit a short lifespan

because of newly formed or broken links between firms dynamically and the entry and exit

of firms. We identify eleven stable communities over time that cover the majority of firms

throughout our sample. These communities group firms across industries and thus constitute

a more general and flexible notion of “industry” to characterize a competitive environment.

Figures 1 and 2 provide a graphical illustration of our results. In the figures, firms are

represented by nodes, and competitive relationships are indicated by edges connecting pairs

of nodes. We apply a force-directed graph drawing algorithm to position the nodes. Nodes

are drawn closer together if there is a larger number of direct and indirect linkages between

them. Also, a central-hub node with a higher node degree is assigned greater gravitational

force, which attracts other nodes closer to it. In Figure 1 we depict the competition network
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and highlight the standard industry classifications. Here, the colors of nodes and edges

correspond to the SIC2 classification for each firm. The figure shows that SIC2 industries

are quite distinct from actual competition networks as the colors are quite mixed throughout

each cluster of firms.

Figure 2 shows that the communities are only weakly related to the SIC industries de-

picted in Figure 1. The plot illustrates the cross-industry communities of firms that emerge

from the competition network classification based on our community detection algorithm.

Firms within the same cross-industry community are denoted by the same color of nodes and

edges. Although firms are competitors within an SIC industry, they often compete across

SIC industries as well. Additionally, not all firms are directly or indirectly in competition

with one another, leading to several distinct communities of firms. By comparing the middle

areas of the two plots, we can observe that a community is not merely a näıve superset or

subset of an industry concept.

Characteristics of competition communities. Table 3 summarizes several characteris-

tics of the eleven stable competition communities that we identify using the Louvian method.

We characterize each community by the (average) number of firms comprising it, their op-

erating and financial characteristics, and the industries they operate in. We include average

leverage (L), return on assets (ROA), firm size (Size), asset tangibility (Tang), and market-

to-book ratio (MB). The last column lists the SIC codes of the industries that are most

represented within each community, with percentages indicating the proportion of firms

from those industries.

Table 3 shows that there is a sizeable variation in average leverage across the communities,

with Community 1 having the lowest average leverage (0.195) and Community 11 the highest

(0.428). This suggests differing financial strategies regarding debt usage. The return on

assets varies slightly across communities, with some communities like Community 5 showing

higher profitability (0.023) compared to others like Community 1 (-0.056). Larger firms with
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higher asset tangibility, like those in Community 11 (Size: 6.988, Tang: 0.280), have different

financing needs compared to smaller or less asset-heavy firms. Communities with higher MB

ratios, such as Community 1 (3.411), are in industries with high growth potential and market

expectations, compared to those with lower MB ratios like Community 11 (1.611).

The next section explores the extent to which financing policies are substitutes or com-

plements within competition communities in the U.S. economy.

4 Financial Leverage in Competition Networks

In this section, we provide a framework and empirical evidence showing that competition

communities serve as a useful concept from social network analysis to study the influence

on financing choices (in particular, leverage) of individual firms. We structure our empirical

analysis around a framework developed by Manski (1993) that distinguishes the nature of in-

teraction effects into three competing hypotheses: endogenous effects, contextual exogenous

effects, and correlated effects.

4.1 Empirical framework for leverage in competition networks

We first introduce some notation and denote the leverage choices of the firms by variable

L. Suppose at time t there are N firms in the economy indexed by i = 1, . . . , N . Each

firm competes in product markets and firm i makes strategic leverage choices Li. Firms

are described by a set of characteristic variables X and their position in the competition

network. We denote the competition community classification to which firm i belongs as Ci

for i = 1, . . . , N . If firm j belongs to the same community as i, then Ci = Cj. The leverage

choice vector in firm community Ci is given by {Lj | j ∈ Ci}. The leverage of every firm i is

chosen strategically, interacting with all other firms in Ci: Li = L({Lj | j ∈ Ci},Xi), where

L(·) captures the firm’s equilibrium best response.

In our setting, the endogenous effect of Manski (1993) represents the propensity of a
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firm to decide on leverage along with the leverage choices of the competition community.7

This is the main effect we are after, and it is similar to a situation where an individual

youth’s achievement in school tends to vary with the average achievement of schoolmates.

The contextual effect represents the propensity of a firm to decide on leverage according to

the exogenous characteristics of the competition community. This is similar to a situation

where classmates’ personalities and friendliness lead to improvement in an individual youth’s

achievement. The correlated effect, like our fixed effects, indicates a pure similarity of firms

within the same community, which gives rise to similar leverage choices, much like how

similar kids with similar backgrounds and abilities tend to attend the same school.

Our empirical model to capture the effect of competition community C, as opposed to

firm characteristics X, affect firm i’s leverage, we are interested in identifying parameters of

the following model for leverage:

E(Li | Ci,Xi) = α + β × E(Li | Ci) + E(Xi | Ci)′γ + δCi +X′
iη. (1)

A non-zero β in expression (1) indicates an endogenous effect in the competition commu-

nity: a firm’s leverage Li varies with E(Li | Ci), the average leverage of firms within the

same community Ci. A non-zero γ identifies a contextual effect: corporate leverage varies

with E(Xi | Ci), the mean of the exogenous characteristic variables Xi among firms in the

same community. When δ ̸= 0, the model captures correlated effects, meaning firms in the

same community tend to behave similarly due to unobserved similar characteristics. The

parameter η controls the direct effect of a firm’s own characteristics Xi on its leverage choice.

The well-known reflection problem raised by Manski (1993) highlights the difficulty of dis-

tinguishing and identifying the endogenous effect and the contextual effect. We address this

identification issue in Section 5. In this section, as a first step, we demonstrate the existence

of at least one of the endogenous or exogenous effects within a competition community.

7Appendix B provides a detailed motivation for our empirical model.
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4.2 Existence of community effect in leverage

The empirical tests must account for the dynamic nature of the leverage data. First, the

competitor network is not fixed over time. In the data, competitors enter and exit. To

capture the competition network, we introduce a time-dependent adjacency matrix, Gt,

with elements gi,j,t. Firms i and j are direct competitors in period t if gi,j,t > 0 and are

not directly competing if gi,j,t = 0, with
∑

j gi,j,t = 1. We define the dynamic communities

through a matrix Ct at time t, with elements ci,j,t. Firms i and j are members of the same

community, involving direct and indirect competitors, if ci,j,t > 0 in period t. Furthermore, as

is standard in the literature, we lag all right-hand side variables to diminish the endogeneity

of firm characteristics. Last, let Xk
j,t−1 be characteristic k = 1, ..., K of firm j at time t− 1.

Community characteristics. Motivated by expression (1), we can write the following

panel model for firm i’s leverage at time t, Li,t, with firm fixed effects αi and time-industry

fixed effects αt×SIC:

Li,t = αi + αt×SIC +
K∑
k=1

β1k ×

(
N∑
j=1

ci,j,t−2X
k
j,t−1

)
︸ ︷︷ ︸

Community characteristicsi,t−1

+ γ′Xi,t−1 + εi,t, (2)

where εi,t is an unobserved mean-zero error term. In expression (2) the β1k, k = 1, ..., K,

coefficients measure the impact of the community on the firm’s leverage after controlling for

the firm’s own characteristics. Since in all specifications we control for both firm and time

fixed effects, any common confounding effect must be present at the firm-quarter level.

Table 4 presents the results for these characteristics-based regressions. Panel A focuses

on the impact of community characteristics on firm leverage. It shows that the average

characteristics of the firms in the community significantly impact the firm’s leverage after

controlling for the Rajan-Zingales variables and various fixed effects. Across specifications,

ROACommunity,t−1 and MBCommunity,t−1 in specifications (1) and (2), while SizeCommunity,t−1
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and TangCommunity,t−1 are significant in all four specifications.

The non-zero significant coefficients β1k in (2), according to Proposition 1 of Manski

(1993), indicates that either β, η or γ in (1) must be non-zero. This implies that at least one

of the exogenous or endogenous effects is significant, i.e., a peer effect by the competition

community is indeed present. Our network setting also satisfies the restrictions in the Corol-

lary of Manski (1993) regarding the manner in which characteristics vary with community

classification: E(X | Ci) varies non-linearly with Ci, and V ar(X | Ci) > 0. Note that our

Ci is a classification of firms, which is dynamically assigned to each individual firm based

on all firms’ topological positions in the complex network of each period.8 Also, as pointed

out by Manski (1993), we assume that firms are aware of the competition community (i.e.,

specification of the reference group) or that they perceive these groups. This is a reasonable

assumption, as the link data source is based on self-declared public information. Firms know

this information since they report it themselves.

Direct vs. indirect competitors. We now focus on the distinction between direct and

indirect competitors which is one of the main goals of our analysis. While a large literature

has documented peer effects from direct competitors on firms’ financial leverage (Frank and

Goyal 2009, Leary and Roberts 2010, 2014, Hoberg and Phillips 2016), little is known about

the financial choices of indirect competitors.

Building on specification (2) for firm i’s leverage at time t with firm fixed effects αi and

time-industry fixed effects αt×SIC, we estimate the model with direct and indirect competi-

8The scalar value of our E(X | Ci) is not a linear function of Ci when Ci is just a group label and it
varies with Ci. Additionally, none of the firm characteristics is a straightforward function of the community
classification label. Therefore, we satisfy the composite parameter identification requirement of Manski
(1993).
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tors’ characteristics in the same specification using panel regressions:

Li,t = αi + αt×SIC +
K∑
k=1

β1k ×

(
N∑
j=1

gi,j,t−2X
k
j,t−1

)
︸ ︷︷ ︸

Direct competitors’ characteristicsi,t−1

+

+
K∑
k=1

β2k ×

(
N∑
j=1

1i ̸=jg
2
i,j,t−2X

k
j,t−1

)
︸ ︷︷ ︸

Indirect competitors’ characteristicsi,t−1

+ γ′Xi,t−1 + εi,t. (3)

Table 5 shows the results. Throughout all specifications, the firms’ own lagged charac-

teristics ROAt−1, MBt−1, and Tangt−1 matter while firm size is insignificant. For the direct

and indirect competitors, ROA and MB are economically and statistically significant deter-

minants of firm leverage with the same sign as the firm’s own characteristics. A firm thus

has lower leverage the larger its own profitability, or the profitability of its competitors, or

the profitability of its competitors’ competitors. Comparing the magnitude of the coeffi-

cients, the firm’s own profitability matters the most, followed by the indirect competitors,

and only last the direct competitors’ profitability. The same ordering holds true for the

market-to-book ratio.

In summary, the leverage regressions show throughout that the leverage in a firm’s com-

petition network matters beyond the impact of the firm’s direct competitors. As illustrated

in these empirical findings, the spillover on a firm’s leverage from its indirect competitors

and the rest community members are positive. The impact of the firm’s community is at

least as large as the direct effect of competition.

The magnitude of these indirect effects is bigger than one would expect with an ex-

ponential decay with distance in the competitor network. In a standard network model

featuring linear interactions between firms’ leverage, for example, based on the Leontief In-

verse matrix, the higher-order neighbours would have exponentially diminishing influence

on the firm’s leverage (Grieser et al. 2022). Thus, only a model with non-linear interaction

pattern among community members can possibly match our empirical findings.
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5 Strategic Financing and Competition Communities

Up until now, we have shown that the characteristics of the firm in competition networks

matters beyond the impact of the firm’s direct competitors. We now explore whether peer

effects in competition communities extend beyond a firm’s direct competitors and depend

on community leverage. In the empirical framework (1) this means there exist endogenous

network effects in firms’ financing decisions resulting from strategic interactions.

5.1 Community leverage

We start by estimating the relation between firm leverage and community leverage. To

operationalize Hypothesis 1, we introduce a new variable Community leveragei,t, defined as

the average leverage in the firm’s community:

Community leveragei,t =
N∑
j=1

ci,j,t−1Lj,t. (4)

The following empirical specification with firm and time-industry fixed effects and the set of

control variables X captures the strategic leverage choice of firm i:

Li,t = αi + αt×SIC + β × Community leveragei,t−1 + γ′Xi,t−1 + εi,t, (5)

where εi,t is an unobserved mean-zero error term. We again include among the controls X

the standard Rajan and Zingales (1995) variables, including profitability, market-to-book

ratio, firm size, and tangibility. All control variable definitions can be found in Table 1.

We first implement (5) by panel data methods. The results of the regressions are pre-

sented in Table 6. Panel A shows that leverage in a firm’s community is a significant de-

terminant of firm leverage in the next period. Based on the specification a 100bps increase

in community leverage increases firm leverage by between 17.5bps and 55.3bps. Across

specifications, we control for the firms’ own leverage determinants, including profitability,
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market-to-book, size, and tangibility. All of these firm characteristics have been shown to

determine leverage. Across specifications, we also vary the fixed effects between firm fixed

effects (column (1)), firm and time fixed effects (column (2) and (3)), and firm and industry

x time fixed effects and the coefficients on LCommunity,t−1 are robustly positive.

Relating these results back to the Manski (1993)-type framework (1), the positive statis-

tically significant β means there exist positive endogenous network effects in firms’ financing

decisions. The positive coefficient is consistent with theoretical models of product market

competition where financing decisions are strategic complements.

5.2 Evidence from granular IV

While the reduced-form analysis of firms’ financial decisions in Section 4 is largely immune

to confounding factors and simultaneity problems, the analysis of peer effects in competition

communities requires distinguishing between direct and indirect effects of financial leverage.

We attempt to do so by constructing a granular instrumental variables approach in the spirit

of Bartik (1991) and Gabaix and Koijen (2024).

To explain firms’ leverage decisions through (4), we must address the issue of joint en-

dogeneity that arises from unobserved common shocks affecting both firm and community

leverage. These shocks can lead to simultaneous determination via the aggregate behav-

ior across all firms. To mitigate this endogeneity issue, we build on Welch (2004) by us-

ing firm-level stock returns as shocks to community leverage. Welch (2004) computes the

implied leverage ratio that comes about if the corporation neither issues debt nor equity

such that all market leverage changes are mechanically due to stock price movements Ri,t:

Imputed leveragei,t = Book debti,t−1/(Book debti,t−1 +Market valuei,t−1 × (1 +Ri,t)). From

this, we can construct a shock by taking the difference between the imputed leverage and

actual lagged leverage: Zi,t = Imputed leveragei,t − Li,t−1. Changes in this variable are not

due to equity or debt issuances in the current period. As a robustness and for comparison, we

define an alternative shock that is based on the change in leverage, that is Zi,t = Li,t−Li,t−1.
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To leverage the cross-section of firms, we denote by xj,t the eigenvector centrality of firm

j belonging to community c shared with firm i at time t. For each period t and firm i, the

centrality-weights of firm j in i’s community are defined as Sc
i,j,t =

xj,t∑
k∈c xk,t

. Eigenvector

centrality measures a firm’s influence within a network by considering not only its direct

connections but also the centrality of its neighbors. A firm has high eigenvector centrality if

it is connected to other highly central firms, emphasizing the quality of connections rather

than just the quantity.9 This approach effectively assesses a firm’s importance within its

community by leveraging the interconnected structure of the network.

We then incorporate in our GIV the lagged relative weights wi,j,t−l = Sc
i,j,t−1− 1

N
, reflecting

the network centrality of each firm in the competition community compared to equal weight-

ing, as these weights indicate the relative importance of each firm in its respective community

(Goldsmith-Pinkham et al. 2020). This method follows the frameworks of Gabaix and Koijen

(2024) and Borusyak et al. (2022, 2024), by constructing a granular instrument similar to

shift-share instruments (Bartik 1991), defined as weighted averages of market-wide shocks

to imputed leverage (‘shift’) with weights based on past network centrality (‘shares’) netting

out the equal-weighted market-wide shock as suggested by Gabaix and Koijen (2024). This

approach measures the firm-specific effect of community leverage without relying on con-

temporaneous firm-quarter accounting information, thus diminishing simultaneity concerns.

The GIV is defined as

zCommunity
i,t =

∑N
j=1(S

c
i,j,t−1 − 1

N
)Zj,t, (6)

where
∑N

j=1 S
c
i,j,t−1 = 1 and non-zero if j is in i’s community. Zj,t is based on the stock

return from quarter t− 1 to t.

9The centrality values are derived from the equation: Gx = λx, where G is the adjacency matrix of an
undirected graph, x is the eigenvector of centrality values, and λ is the corresponding eigenvalue. While the
näıve row sum of G provides the node degrees, the eigenvector corresponding to the largest eigenvalue (by
modulus) offers a more insightful measure of centrality that accounts for the influence of connected firms.
Normalizing G by the largest eigenvalue, we get: Ax = Ix =⇒ (I−A)x = 0, where I is the identity matrix.
The existence of the Leontief inverse matrix (I − A)−1, which captures the cumulative effect of direct and
indirect connections, guarantees non-trivial solutions.
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The idea is that the instrument value is zero when the network is completely connected.

In this case, the connection density/sparsity is the same among any sub-group of the network

and thus, there is only one community which is the whole network. Also, there is no difference

among the centralities of nodes and therefore, any centrality-alike weighting scheme would

give equal weights among members. Consequently, the any centrality-weighting scheme

within the community is the same as equal-weighting on all nodes of the whole network.

Only when the network structure deviates from a same-centrality structure, such as a star

network, will the instrument value be non-zero.

We proceed in two stages. We first regress Community leveragei,t defined in (4) on

zCommunity
i,t as an instrument. We have the first-stage panel regression

Community leveragei,t = αi + αt×SIC + δ × zCommunity
i,t + γ′Xi,t + ui,t. (7)

Based on the coefficient estimates in (7), we define the prediction used in place of Community

leveragei,t−1 in the second-stage panel regression (5) as ̂Community leveragei,t−1 = α̂i +

α̂t−1×SIC + δ̂ × zCommunity
i,t−1 + γ̂′Xi,t−1, with firm leverage Li,t as the dependent variable. This

2SLS approach results in a consistent estimator of β in specification (5) under the GIV

validity condition: E[εi,t · zCommunity
i,t−1 ] = 0 ⇔

∑N
j=1 E[εi,t · wi,j,t−1 · Rj,t−1] = 0. This exclusion

restriction is valid so long as the historical community weights wi,j,t−1 can be taken as

exogenous or predetermined from the perspective of the model of competition underlying

the firms’ leverage decisions.10

Table 6, Panel B reports the main results. The results correspond to columns (3) and (4)

in Panel A and reinforce the significant impact of community leverage on a firm’s leverage

within the granular IV framework. The coefficients on the community leverage variable,

which are instrumented using a weighted sum of stock return shocks from the firm’s com-

10The exclusion restriction can be interpreted as that the return Rj,t−1 at time t− 1 is uncorrelated with
the compound error εj,t ≡ 1∑

i wi,j,t−1

∑
i wi,j,t−1εi,t, which is the share-weighted average across firms in the

unexplained component of firm-level leverage at time t and, in particular, the error term of the firm most
exposed to that shock. By construction, endogenous changes of the centralities and endogenous firm-specific
trends do not cause a variation in the instrument across firms and over time.
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munity members (specifications (1) and (2)) or a weighted sum of leverage changes from the

firm’s community members (specifications (3) and (4)) are positive and statistically signifi-

cant. This suggests that as the leverage of a firm’s community members increases, the firm’s

own leverage tends to rise as well. Specifically, the coefficients range from 0.532 to 0.752,

indicating that a one standard deviation increase in community leverage is associated with

an increase in firm leverage by 4.5 (=0.532*0.084) to 6.3 (=0.752*0.084) percentage points.

The statistical significance of the coefficients (at the 1% or 5% levels) suggests the relation-

ship is statistically and economically significant. It is interesting to compare the magnitude

of the coefficients to the ones in columns (3) and (4) of Panel A which contains the results

for the same specifications without GIV. In Panel B, the β coefficients are three times larger

than in Panel A.

These findings suggest that firms are influenced by the financial behaviors of their com-

munity. The presence of fixed effects controls for unobserved heterogeneity at the firm,

quarter, and industry×quarter levels. The pass-through rate of financial shocks ranges be-

tween about 0.5 and 0.8 in Table 6. Overall, the results suggest that a firm’s leverage

decisions are not made in isolation but are significantly affected by the leverage dynamics

within its community.

5.3 Falsification tests and robustness

Two types of falsification tests support the validity of the granular IV design. First, in a

pre-trend test, we replace the dependent variable at time t by its value in a prior period

and we rerun the IV. For the lag we use one year. Second, in placebo tests, we replace the

dependent variable at time t by a contemporaneous placebo outcome that we do not expect

to be causally affected by the treatment, for example firm investment.

Table 7 reports the results. The results show that community leverage is, as expected,

economically immaterial in explaining lagged leverage. For the false discovery test, the

results reveal that community leverage is economically immaterial in explaining firm invest-
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ment. In unreported results for brevity, we show that these results hold true if we replace

the dependent variable with the market-to-boot ratio or return on equity. Overall, these

falsification tests lend support for the validity of our empirical design.

5.4 Community vs. competitors

To rule out that the effects are driven solely by the firm’s direct competitors (Hypothesis 2),

we next augment the model by competitor leverage, defined as the average leverage of the

firm’s direct competitors:

Competitor leveragei,t =
N∑
j=1

gi,j,t−1Lj,t. (8)

With the additional determinant Competitor leveragei,t−1, we run the following regression:

Li,t = αi+αt×SIC+β1×Community leveragei,t−1+β2×Competitor leveragei,t−1+γ′Xi,t−1+εi,t,

(9)

where X is the same set of controls as in (5).

Table 8 shows that leverage in a firm’s community is as important as the leverage of the

firm’s direct competitors. Across specifications, the coefficient on LCommunity,t−1 is about two

to three times larger than the coefficient on LDirect competitors,t−1 and statistically significant

throughout. Though, there can be correlation between the direct competitor average variable

and the community variable, the average number of direct competitors to a firm is below

7 while the average number of firms in the same community to a firm is above 200. While

we are using equal-weighting, it is impossible that the dynamics of community average to

a specific firm is only driven by the its direct competitors by over-weighting. Similarly,

the average number of second-order neighbours who are indirectly linked to a firm via one

intermediate, is above 60. In economic terms, based on the GIV estimates in column (2), a

one standard deviation increase in community leverage is associated with an increase in firm
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leverage by 3.3 (=0.387*0.084) percentage points, while a one standard deviation increase

in competitor leverage is associated with a 2.3 (=0.145*0.160) percentage points increase.

5.5 Direct vs. indirect competitors

Now we decompose the total effect of the firm’s community into the effects originating at the

firm’s direct competitors, the competitors of the competitors, and so forth (Hypothesis 3).

A comparison between the coefficients on the direct and indirect competitors allows to assess

the extent of propagation of leverage shocks and the magnitude of the spillovers. In models

with linear interactions, the effect of indirect connections dies out exponentially, suggesting

that direct have bigger impact than indirect neighbors.

To check the magnitude of direct compared to indirect competitors, we estimate the model

with direct and indirect competitors’ leverage in the same specification while eliminating

feedback loops. The coefficients g1i,j,t−1 are the (i, j)-elements of the matrixGt−1 that captures

the competitor network at time t − 1. The coefficients g2i,j,t−1 are the (i, j)-elements of the

matrix G2
t−1 = Gt−1 ·Gt−1 that captures the competitors’ competitors. In principle, we can

estimate βl, l = 1, 2, ..., for higher-order expansions of the competitor network, but higher

powers of G become increasingly singular and the estimates become therefore less reliable.

Another complication arises from the fact that a competitor of a firm’s competitor is the

firm itself. Competition loops of this sort are captured by the diagonal elements of Gt−1.

To distinguish between the effect of competition loops and competition chains, we further

split the matrix capturing competitors’ competitors, G2
t−1 = Gt−1 · Gt−1, into the effects

coming from the off-diagonal elements, g2i,j,t−1 with i ̸= j and the diagonal elements, g2i,j,t−1

with i = j. Accordingly, we define the indirect competitors’ leverage by

Direct competitors’ leveragei,t−1 =
∑N

j=1 g
1
i,j,t−1Lj,t−1,

Indirect competitors’ leveragei,t−1 =
∑N

j=1 1i ̸=jg
2
i,j,t−1Lj,t−1,

LDiagonal
Indirect competitors,t−1 =

∑N
j=1 1i=jg

2
i,j,t−1Lj,t−1.

(10)
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We can now estimate the model by including the direct and indirect competitors’ leverage

in the same specification and eliminate feedback loops by dropping LDiagonal
Indirect competitors,t−1 from

the panel regression specification:

Li,t = αi + αt×SIC + β1 ×Direct competitors’ leveragei,t−1+

+ β2 × Indirect competitors’ leveragei,t−1 + γ′Xi,t−1 + εi,t, (11)

where X is the same set of control variables as in (5). The results are presented in Table 9.

Table 9, Panel A shows the estimates for β1 which vary between 0.092 and 0.224 and are

all statistically significant. Panel B shows the estimates for β2 which vary between 0.120

and 0.429 and are all statistically significant. Panel C shows the estimates for β1 and β2

jointly. Both coefficients remain statistically significant but the coefficient β2 tends to be up

to more than twice as large as β1. In economic terms, based on the OLS estimates, a one

standard deviation increase in indirect competitor leverage is associated with an increase

in firm leverage by 1.1 (=0.087*0.119) percentage points while a one standard deviation

increase in direct competitor leverage is associated with a 1.3 (=0.082*0.160) percentage

points increase. It thus is the case that the indirect competitors have about as large an

impact on the firm’s leverage as the direct competitors.

6 Composition of Competition Communities

We now explore the composition and evolution of competition communities in the U.S. econ-

omy, and we compare the Revere data to competition communities built upon the method-

ology developed by Hoberg and Phillips (2010, 2016).
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6.1 Characteristics and evolution of competition communities

To give a better interpretation to the identified firm groups, we document the properties of

the eleven competition communities, focusing on their characteristics, evolution over time,

and their size as captured by their degree distributions.

Description of communities. Exploring the composition of each community, we find

that each community exhibits distinct industrial compositions and financial characteristics,

reflecting how different sectors influence the financial behavior of firms within these compe-

tition communities. The last column in Table 3 reports the three most prominent SIC codes

in each community. Community 1 (“Innovative Chemical and Medical Services”) is predom-

inantly composed of firms in the chemicals and allied products industry, with a significant

presence in medical and optical goods. These industries typically have high R&D costs, re-

flected in the relatively lower average leverage (0.195) and negative ROA (-0.056), suggesting

potential challenges in profitability or heavy investment phases. The high market-to-book

ratio (3.411) indicates that these firms are likely valued for future growth potential despite

current earnings challenges.

Community 2 (“High-Tech Manufacturing and Services”) is dominated by firms in the

electronics and machinery sectors. These industries typically require significant capital in-

vestment, which is reflected in their relatively high average firm size (6.029) and moderate

leverage (0.223). The close to zero ROA (-0.001) suggests these firms are operating at

break-even levels, potentially due to high competition or ongoing capital expenditures. The

market-to-book ratio (2.308) is moderate, indicating balanced growth expectations.

Community 3 (“Diversified Tech and Equipment”) is diverse, with significant representa-

tion from medical goods, machinery, and electronics. These sectors are often characterized

by a mix of stable cash flows and innovation-driven growth, reflected in their moderate

leverage (0.265) and positive ROA (0.008). The size of firms (6.119) and tangibility (0.164)

are moderate, supporting a balanced financial profile with moderate market-to-book ratio
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(1.974).

Community 4 (“Service-Oriented Business Solutions”) is heavily skewed toward busi-

ness services, with some presence in communications and machinery. These industries tend

to have lower asset tangibility (0.122) and are service-oriented, leading to higher leverage

(0.286) as these firms may rely more on financing. The positive ROA (0.008) suggests opera-

tional profitability, and the moderate market-to-book ratio (2.459) reflects reasonable growth

expectations.

Community 5 (“Consumer Retail and Apparel”) focuses on retail and apparel, sectors

that are generally consumer-driven. These industries exhibit higher leverage (0.334), possibly

due to the need for inventory financing and capital investment in retail operations. The

positive ROA (0.023) suggests profitability, supported by a larger average firm size (6.956)

and relatively high tangibility (0.265). The market-to-book ratio (2.047) indicates moderate

growth expectations.

Community 6 (“Consumer Products and Food Services”) is characterized by firms in the

food, chemicals, and food services industries. These sectors tend to have stable cash flows

and higher asset tangibility (0.326), leading to higher leverage (0.343) as firms can secure

debt against tangible assets. The positive ROA (0.018) indicates modest profitability, while

the market-to-book ratio (2.133) reflects balanced market expectations.

Community 7 (“Health and Professional Services”) includes firms primarily from health

and business services, with some representation in professional services. These industries

typically have lower asset tangibility (0.179) and operate with higher leverage (0.345) due

to the service-oriented nature of their business. The slightly positive ROA (0.015) reflects

modest profitability, while the market-to-book ratio (2.070) suggests moderate growth po-

tential.

Community 8 (“Capital-Intensive Energy and Chemicals”) is focused on capital-intensive

industries like oil and gas extraction, chemicals, and electronics. These sectors exhibit high

asset tangibility (0.421) and correspondingly high leverage (0.365), supported by tangible
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assets. The low ROA (0.005) suggests that these firms may face profitability challenges,

perhaps due to high capital expenditures. The market-to-book ratio (1.768) is relatively

low, indicating limited growth expectations.

Community 9 (“Electronics and Durable Goods Trade”) is characterized by a mix of

electronics, durable goods wholesale, and business services. These industries show moderate

asset tangibility (0.218) and leverage (0.388). The positive ROA (0.014) indicates operational

profitability, while the low market-to-book ratio (1.672) suggests limited growth potential

compared to other communities.

Community 10 (“Industrial and Professional Services”) includes firms from transporta-

tion equipment, professional services, and oil and gas. These industries have a balanced

financial profile with relatively high leverage (0.400) and tangibility (0.298), supported by

capital-intensive operations. The positive ROA (0.013) suggests profitability, albeit with a

lower market-to-book ratio (1.603), indicating cautious market expectations.

Community 11 (“Heavy Manufacturing and Industrial Goods”) is focused on transporta-

tion equipment, industrial machinery, and paper products. These capital-intensive industries

have the highest leverage (0.428) among the communities, supported by significant tangible

assets (Tang: 0.280). The slightly positive ROA (0.014) indicates profitability, while the low

market-to-book ratio (1.611) suggests conservative growth expectations.

Evolution in competition communities. We now explore the evolution of the com-

petition communities. Dynamically, there are 150 competition communities that have ever

appeared over the entire sample period. However, when considering communities with a min-

imum of 10 firms, their numbers show remarkable stability, consistently fluctuating within a

narrow range between 12 and 16 in every quarter. Importantly, eleven major communities

persist throughout our entire sample period. Despite this apparent stability, the evolution

and composition of these communities remain susceptible to various factors, including tech-

nological innovations, globalization, and the growing world of e-commerce.
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One noteworthy example of the advent of disruptive technologies is the introduction of the

iPhone. Steve Jobs, co-founder of Apple, unveiled the first iPhone on January 9, 2007, and

it reached the market on June 29, 2007. This momentum continued with the announcement

of the highly successful iPhone 3G on June 9, 2008, followed by its release on July 11, 2008.

Interestingly, Apple resided in one of the eleven major competition communities.

When we examine the percentage changes in the membership of Apple’s community,

we observe significant changes during 2007Q2 and 2007Q3, with the composition of firms

changing as much as 11.99% and 7.02%, respectively. This pattern continues into 2008

with changes of 11.15% and 15.11% during 2008Q2 and 2008Q3. However, prior to and

after these significant quarters, the composition fluctuations of this community were more

muted, staying within a 2% to 5% range. Also, we can observe the impact of technological

innovation on network structure. Not surprisingly, the second biggest change (17.39%) in

Apple’s competitor connection degree occurred in 2008Q2 as well. The largest alteration

(17.64%) in Apple’s connection degree was in 2006Q2, coinciding with the announcements

of the first two MacBook Pro models in January and April 2006.

Heavy-tailed degree distribution. We further explore the property of the competition

networks’ node degree distribution. This is important as the number of direct and indirect

competitors, respectively, and the broader network structure of peers and peers of peers can

affect the nature of strategic interactions. For instance, two large firms competing directly

may make different product market and financial choices as one large firm competing with

many small firms, even if the total size of the small firms is the same as the large.

The degree of a node represents the number of connections it has with other nodes within

the network. A node degree distribution measures how these degrees are spread across the

nodes, reflecting the connectivity within the network. A heavy-tailed degree distribution

highlights the prevalence of nodes with significantly higher degrees than the average. This

characteristic often appears in networks where a few firms have an unusually large number of
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Figure 3: Log-log plot of the node degree distribution for the network of the quarter 2018Q1.
The x-axis reports node degrees. The y-axis reports the frequency of nodes having a specific degree. The

overall trend suggests a heavy-tailed distribution where a few nodes have very high degrees (hubs) and

majority nodes have low degrees.

connections compared to the majority of firms. In fact, it is a common feature, also known

as a scale-free network, in many real-world complex networks, such as movie-actor networks

and protein interaction networks.

Figure 3 shows a log-log plot of the node degree distribution for the network of the

quarter 2018Q1. The figure reveals that the degree distribution is heavy-tailed. Table 10

further supports this empirical evidence both for the entire network as well as within the

eleven persistent major communities. The detailed breakdown allows for comparison between

the overall network and its sub-communities, revealing how tail behaviors—important for

describing the topology of the network structure—vary across different communities of the

network. The table specifically reports on three metrics including skewness, kurtosis, and

the Hill estimator, with values presented as averages across all quarters for both the entire

network and each major persistent community. For the entire network, the skewness is

7.510, indicating a highly asymmetric distribution, with a longer tail on one side. The

kurtosis is 89.064, suggesting a distribution with extremely heavy tails compared to a normal

distribution. The Hill Estimator, which is used to estimate the tail index of the distribution,
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is 2.074.

On average, the competition communities exhibit a skewness of 3.296, which is lower

than the entire network, indicating less asymmetry within individual communities. The

average kurtosis across communities is 18.051, still heavy-tailed but significantly lower than

the overall network, implying less extreme tail behavior. The Hill Estimator average for

communities is 2.597, indicating variability in the tail behavior among the communities.

Additionally, the table also lists specific values for each community. For instance, Community

1 has a skewness of 2.347, kurtosis of 9.378, and a Hill Estimator of 3.355, indicating moderate

asymmetry and heavy tails. On the other hand, Community 5 has a skewness of 7.197 and

kurtosis of 63.518, which are closer to the overall network’s values, reflecting more extreme

distribution characteristics.

6.2 Comparison with TNIC

When studying the competitive dynamics within competition communities, knowledge about

the network of relationships between firms is crucial. Both the Factset Revere data and

the TNIC measure of Hoberg and Phillips (2016) provide insights into these competitive

networks but employ different methodologies and data granularity. By comparing these two

datasets, we aim to assess the consistency and validity of the community structures that we

have revealed. This comparison is important for validating the robustness of our network-

based analysis and for ensuring that our findings are not artifacts of specific data sources or

methodologies. Our goal in this section is to understand how variations in data granularity

and coverage impact the detected competitive communities and to align our findings with

established metrics.

Standard data cleaning and differences. To compare the Factset Revere data with

the TNIC measure, we start with the TNIC-3 similarity scores which provide networks

matching the granularity of SIC-3 levels. We restrict the data to our Revere sample period
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and conduct the same cleaning on the pool of firms. These include similarly excluding

utilities firms, financial firms, and international affairs non-operating establishments and

removing the firms with missing information required to calculate the characteristics used

in main empirical analysis.

At this step, TNIC-3 data includes 6,291 firms throughout the sample which is larger

than our REVERE dataset. This wider range of firms is facilitated by merging via GVKEY

in TNIC, whereas the Revere dataset is limited by the use of CUSIP and the WRDS merge

table. However, looking into each quarter, the coverage of the REVERE data is richer. For

example, in the third quarter of 2018, the cleaned TNIC-3 covers 2,518 firms, while the

cleaned Revere covers 3,351 firms.11

Moreover, the TNIC-3 contains 5 stable communities, significantly fewer than the 11

persistent communities identified in the Factset Revere dataset. This discrepancy can be

attributed to the broader classification used in SIC-3, which groups firms more generally

compared to the more stringent direct competition criteria applied in the Revere data by their

analysts. This more flexible classification in TNIC results in denser networks, as evidenced

by higher average degrees, which contrasts with the sparser networks in Revere data. For

example, throughout the sample periods, on average the average node degree in Revere is 8,

whereas the TNIC-3 has 88. These differences illustrate the impact of data granularity and

coverage on community detection, highlighting the need to align the datasets more closely

for meaningful comparisons.

Extra cleaning. To have a more comparable network structure and to make sure we treat

each firm and relation link homogeneously, we further clean the TNIC-3 data by leveling

up the similarity score threshold. Simply assigning a threshold of value between 0.1 and

0.2 can lead to an increase in classified communities, as individual firm’s identified linked

competitors are fewer and the network is sparser. For example, setting a threshold of 0.15

leads to 11 persistent major communities (that are present in all quarters), exactly the same

11If we do not clean TNIC-3 at all, the raw one covers 3,917 firms in 2018Q3.
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number of persistent communities as in the dynamic network of Revere data. In the later

comparison analysis, we set a threshold of 0.1 similarity scores in TNIC-3 data for all firm

pairs, trying to keep as much data as possible. This step leads to 13 persistent communities,

reduces the total coverage of TNIC to 4,002 firms and reduces the average node degrees to

49.

As the TNIC similarity scores enable the ranking of closest firms, Grieser et al. (2022) in-

troduce a restriction—for every firm they limit the direct competitors top 10 firms according

to the scores. However, this impacts the structure of the competition network, resulting in an

asymmetric adjacency matrix. If Firm A considers Firm B as a competitor due to high simi-

larity score, it does not necessarily imply that Firm B views Firm A as a competitor as there

could be other firms than A having higher similarity scores with B. This asymmetry arises

because their analysis focuses on direct competitors—firms that compete with each other in

a straightforward manner—without considering the network of second-order neighbors (i.e.,

competitors of competitors). This methodological choice has implications for how compet-

itive relationships are represented and analyzed. By focusing on direct neighbors, Grieser

et al. (2022) effectively construct a network that reflects immediate competitive interactions

but excludes the broader context of indirect competitive relationships. Consequently, their

approach can lead to an adjacency matrix where connections are not reciprocated, potentially

affecting the detected community structures and network properties. For our analysis, we

do not need to follow the asymmetric framework. Instead, we adopt the approach that con-

siders mutual competition relationship and adapt both direct and higher-order competitive

relationships, allowing us to consider the impact of indirectly linked neighbors.

TNIC comparison. Given the same pair of firms, we investigate the pairwise difference

between TNIC and Factset Revere. To enable comparison, we limit ourselves to firms that

exist in both datasets. For example, in 2018Q3, Factset Revere after filtering provides 3,351

firms while TNIC is available for 1,190 firms, for an overlapping total of 897. We then check
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how many competitive links overlap between the two datasets at the firm-firm level. From

this, we construct a contingency table illustrating the overlap between the two.

After populating the contingency table with the values for (Revere, TNIC)=(Yes,Yes),

(Yes,No), (No,No), and (No,Yes) from the two datasets, we compute both an overlap ratio

and the F -score oftenly used in prediction analysis. These metrics provide a comprehensive

view of the overlap and divergence. In our analysis, it is in spirit similar to either treating

Revere as the true labels of classification and TNIC as the predicted labels or the other way

around in order to check the difference between the actual and the predicted.

The overlap ratio measures the overall percentage of same classified pairs (both linked

and not linked) in both Revere and TNIC out of the total number of links evaluated:

Overlap =
TP + TN

TP + TN + FP + FN
, (12)

where TP is the number of links that exist in both datasets, TN is the number of non-

links in both datasets, FP is the number of non-links identified in Revere whereby TNIC

identifies links, and FN is the number of links that exist in Revere but not in TNIC. The

F -score considers both precision (the number of true positive results divided by the number

of all predicted positive results) and recall (the number of true positives divided by the total

number of actual positives.). The F -score is the harmonic mean of precision and recall,

providing a single metric that balances both concerns:

Precision = TP
TP+FP

, Recall = TP
TP+FN

, F -score = 2× Precision×Recall
Precision+Recall

. (13)

Table 11 reports the results. The average overlap score for Revere relative to TNIC is

0.983. The average precision rate is 0.15. The average recall is 0.34. The average F-score is

0.2. These measures send a mixed message. On the one hand, the overlap is quite large in

that most non-links are the same in both dataset. Also, many links exist in both datasets.

However, TNIC identifies many links that Revere does not recognize. Interestingly, though,
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there also exist many connections in Revere that TNIC does not consider. Overall, the link

information extracted from the two data sources seems to be complementary with Revere

focusing on larger, more significant links while TNIC is more comprehensive. When we

increase the similarity score threshold to 0.15, the two networks become directly comparable

with one another since many of the (No,Yes) links get eliminated, and we identify eleven

stable communities in both datasets.

7 Conclusion

We document novel facts about financial leverage among U.S. corporations. First, using data

on firms’ self-declared competitors, we identify that firms operate within competition com-

munities that span both within and across traditional industries. A competition community

is defined as a group of firms that compete in product markets directly or indirectly through

their connections with other firms within the same group, while being relatively sparsely

connected with firms outside the group. By employing a machine-learning approach, we

detect eleven stable competition communities in the U.S. economy.

Second, we investigate the propagation of financial shocks across these competition com-

munities. Our findings reveal that a firm’s leverage decisions are influenced not only by its

own characteristics but also by the characteristics and leverage choices of its direct competi-

tors, indirect competitors, and the broader community. Notably, the impact of the commu-

nity on a firm’s leverage is strongly positive and economically significant, with a magnitude

comparable to that of direct competitors. These findings are consistent with models of

product market competition where financing decisions act as strategic complements. This

highlights a potential channel for the amplification of financial shocks and, more generally,

the importance of indirect competitors and the overall network structure of the competitive

environment for the transmission of financial shocks.
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APPENDIX

A Louvain Method

This section provides a summary of the Louvain method proposed by Blondel et al. (2008)

and the modification by Aynaud and Guillaume (2010) for network evolution.

The static Louvain method achieves optimization via multiple big iterations. Every big

iteration corresponds to one hierarchy of analysis and consists of two stages. Within the first

stage, there is another set of loops going through all nodes of the network of this hierarchy.

Imagine a (weighted) network consisting of N nodes to begin. In the first stage, the

algorithm initially assigns each node to one uniquely labeled community, resulting in N

communities. For each neighbor j of node i, the modularity gain is evaluated when moving

i to the community of j. Node i is then moved to the community that provides the highest

positive modularity gain. If no positive gain is possible, node i remains in its original

community. A node can be reconsidered multiple times. This iterative process is repeated

for all nodes until no further modularity improvement can be made, thus concluding the first

phase with a local modularity maximum. Then, no single node move can further enhance

modularity. Removing a node from a community to isolate it, and then adding the isolated

node to another community, both cause changes in modularity. To speed up the process,

the first phase can be stopped as soon as the relative gain in modularity does not exceed

a default threshold. The outcome of the algorithm can vary slightly based on the order in

which nodes are processed, though this primarily affects optimization speed rather than the

final modularity value.

The change in modularity ∆Q obtained by moving an isolated node i into a community

C can be computed explicitly by

∆Q =

[∑
in+2ki,in
2m

−
(∑

tot +ki
2m

)2
]
−

[∑
in

2m
−
(∑

tot

2m

)2

−
(

ki
2m

)2
]
, (14)
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where the latter large square bracket represents the sum of the modularity of the community

without node i and the modularity of the isolated cluster of node i, while the first large square

bracket represents the modularity of the community after adding node i.
∑

in represents the

sum of the weights of the links within C,
∑

tot is the sum of the weights of the links incident

to nodes in C, ki denotes the sum of the weights of the links incident to node i, ki,in is the

sum of the weights of the links from i to nodes in C, and m is the sum of the weights of all

the links in the network. A similar expression is used to evaluate the change in modularity

when i is removed from its community.

In the second stage, each of the classified communities at the current hierarchy is re-

represented as a node to form a new network at a higher hierarchy. Edges connecting nodes

from C to other communities are likewise reduced to a single weighted edge. Connections

among nodes within the same community result in weighted self-loop for that community in

the new network. Once the new graph is created, the second stage has ended, completing

the entire big iteration of the algorithm. Then, the steps in the two stages are repeated on

the new-hierarchy network.

The iterations continue until no further changes are observed and total modularity is

maximized. The classified communities at this highest hierarchy are then considered the

final result of community detection for the original graph.

Below we provide a pseudo code summary of the algorithm.

What Aynaud and Guillaume (2010) improved on the static algorithm to stabilize it

for evolving dynamic graphs is the change in the initialization of the network. At time

t, the algorithm initializes G with the optimized partitioned network from t − 1, instead

of restarting the entire computation with every node in its own unique community and

regrouping them from the lowest hierarchy. Then, the same algorithm for moving nodes

continues with iterations until no further gain in modularity is possible. Each community,

once classified in the final optimization of a time period, is uniquely labeled for tracking.

However, the network topology could change dramatically over some periods, making
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Algorithm 1 Pseudo-code of Louvain Method

1: G = the initial network; Repeat = True
2: while Repeat do
3: Let each node of G be a unique community; MoveNode = True
4: while MoveNode do
5: for every node n of G do
6: Move n to one of the neighboring communities that has the highest positive

gain in modularity. If no positive gain is possible, leave it unmoved.
7: end for
8: if No move happened then MoveNode = False
9: end if
10: end while
11: if the new modularity is higher than the previous hierarchy then
12: G = the new network among communities of G
13: else
14: Repeat = False
15: end if
16: end while

the optimal partition from the previous period suboptimal for initialization in terms of final

modularity maximization, although it is good for stabilization. Thus, instead of strictly

initializing with the exact same previously optimal partition, Aynaud and Guillaume (2010)

place x% of randomly selected nodes in their own unique communities during the initial

iteration. The higher the value of x, the more the algorithm can modify the communities,

as the nodes placed alone in their communities during the initial iteration are highly likely

to be moved. If x = 100%, the modified algorithm functions exactly the same as the static

Louvain method. A low level of 2% provides a good compromise between stability and

improved modularity maximization.
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B Motivation for Empirical Model

Consider the following regression model for financial leverage y:

E(y | x, z) = α + βE(y | x) + E(z | x)′γ + x′δ + z′η. (15)

The reflection problem arises out of the presence of E(y | x) as a regressor in (15).

Integrating both sides of (15) with respect to z reveals that E(y | x) solves the “social

equilibrium” equation

E(y | x) = α + βE(y | x) + E(z | x)′γ + x′δ + E(z | x)′η. (16)

Provided that β ̸= 1, equation (16) has a unique solution, namely

E(y | x) = α/(1− β) + E(z | x)′(γ + η)/(1− β) + x′δ/(1− β). (17)

Thus, E(y | x) is a linear function of [1,E(z | x), x], where ”1” denotes the constant. It

follows that the parameters (α, β, γ, δ) are all unidentified. Endogenous effects cannot be

distinguished from exogenous effects or from correlated effects.

What is identified? Inserting (17) into (15) we obtain the reduced form model

E(y | x, z) = α/(1− β) + E(z | x)′[(γ + βη)/(1− β)] + x′δ/(1− β) + z′η. (18)

As pointed out by Manski (1993), we assume that individuals are aware of the specifi-

cation of the reference group (competition community) or that they perceive these groups.

This is a reasonable assumption in our application, as the link data source is based on firms’

self-declared public information. Hence firms have all the necessary information to deduce

the community domain.
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Table 1: Variables definitions

Table 1 presents definitions and sources of data used.

Variable Description

Financial indicators (Source: Compustat North America Quarterly)
Book debt BD Liabilities total (LTQ) + Preferred stock (PSTKQ) – Deferred taxes (TXDITCQ)
Book equity BE Assets total (ATQ) – Book debt
Book leverage BL Book debt/Assets total (AT)
Market value MV Common Shares Outstanding (CSHOQ) × (Price Close (PRCCQ))
Market leverage L Book debt/(Book debt + Market value )
Imputed leverage Lagged book debt/(Lagged book debt + Lagged market value×(1 +R) )
Stock return R (Price Close (PRCCQ) - lagged Price Close (PRCCQ))/(lagged Price Close (PRCCQ)
Return on assets ROA (Income before extraordinary items (IBQ) + Depreciation (DPQ))/Assets total
Market-to-book MB (Market value + Book debt)/Assets total
Log(total assets) (Size)Natural logarithm of Assets total)
Tangibility Tang Property, plant, and equipment total net (PPENTQ)/Assets total
Investment Capital Expenditures (CAPX) - Sale of Property (SPPE)

/Property Plant and Equipment - Total (Gross) (PPEGT)
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Table 2: Summary statistics

Panel A provides summary statistics of the main variables used in the empirical analysis. The firm-level
variables are winsorized for each quarter at 1% and 99% levels. The community variables are averages of
the firm-level variables of the firms in each community. The competitors variables are weighted averages
(according to the adjacency matrices) of the firm-level variables of the competitor firms. Panel B provides
features of the network used in the empirical analysis. ’Number of communities’ excludes the communities
of less than four firms. ’Nodes in community’ measures the average number of firms (over time) in each
community. Panel C reports the number of firms and links in Revere data for the final dataset merged with
Compustat.

Mean SD Min 25% 50% 75% Max N

Panel A: Fundamental variables

Market leverage (L) 0.329 0.226 0.011 0.145 0.285 0.468 0.991 120,256
Return on asset (ROA) 0.003 0.067 -0.533 0.002 0.019 0.032 0.150 120,256
Log(total assets) (Size) 6.518 2.028 1.731 5.092 6.526 7.918 11.810 120,256
Tangibility (Tang) 0.243 0.233 0.001 0.066 0.157 0.351 0.954 120,256
Market-to-book ratio (MB) 2.125 1.594 0.403 1.164 1.596 2.460 11.979 120,256
Investment 0.066 0.0754 -0.109 0.022 0.045 0.084 0.523 120,256

LCommunity 0.263 0.084 0.015 0.200 0.271 0.314 0.807 120,256
LDirect competitors 0.302 0.160 0.004 0.186 0.277 0.388 0.991 120,256
LIndirect competitors 0.289 0.119 0.006 0.202 0.275 0.356 0.991 120,256

Panel B: Network measures

No. of direct competitors 7 10 1 2 4 8 194 120,256
No. of indirect competitors 70 84 1 14 36 95 846 120,256
No. of community members 254 143 2 152 207 370 601 120,256

Panel C: Network links through time

Year Competition links Competitor-network firms

2003 6,241 1,765
2004 5,313 1,787
2005 7,059 1,943
2006 7,524 2,068
2007 8,712 2,421
2008 11,075 2,551
2009 8,025 2,362
2010 9,044 2,342
2011 10,520 2,572
2012 11,543 2,743
2013 12,944 2,905
2014 14,610 3,157
2015 17,716 3,331
2016 19,789 3,448
2017 21,464 3,580
2018 19,205 3,378
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Table 3: Characteristics of competition communities

This table reports average firm characteristics for each community. SIC2 codes - 13: Oil and Gas Extraction,

20: Food and Kindred Products, 23: Apparel, Finished Products from Fabrics & Similar Materials, 26:

Paper and Allied Products, 28: Chemicals and Allied Products, 35: Industrial and Commercial Machinery

and Computer Equipment, 36: Electronic & Other Electrical Equipment & Components, 37: Transportation

Equipment, 38: Measuring, Photographic, Medical, & Optical Goods, & Clocks, 48: Communications, 50:

Wholesale Trade - Durable Goods, 56: Apparel and Accessory Stores, 58: Eating and Drinking Places, 59:

Miscellaneous Retail, 73: Business Services, 80: Health Services, 87: Engineering, Accounting, Research,

and Management Services

L ROA Size Tang MB SIC2

Community 1 0.195 -0.056 5.294 0.118 3.411 28 (46.86%), 38 (18.20%), 80 (1.52%)
Community 2 0.223 -0.001 6.029 0.116 2.308 36 (49.47%), 35 (13.19%), 73 (9.00%)
Community 3 0.265 0.008 6.119 0.164 1.974 38 (25.08%), 35 (17.23%), 36 (15.85%)
Community 4 0.286 0.008 6.130 0.122 2.459 73 (50.52%), 48 (9.43%), 35 (4.55%)
Community 5 0.334 0.023 6.956 0.265 2.047 56 (16.58%), 59 (10.28%), 23 (9.12%)
Community 6 0.343 0.018 6.667 0.326 2.133 20 (23.38%), 28 (15.51%), 58 (15.22%)
Community 7 0.345 0.015 6.459 0.179 2.070 80 (25.51%), 73 (16.03%), 87 (7.70%)
Community 8 0.365 0.005 6.825 0.421 1.768 13 (19.00%), 28 (14.36%), 36 (13.01%)
Community 9 0.388 0.014 6.576 0.218 1.672 36 (18.60%), 50 (18.60%), 73 (8.22%)
Community 10 0.400 0.013 6.814 0.298 1.603 37 (10.48%), 87 (10.17%), 13 (8.67%)
Community 11 0.428 0.014 6.988 0.280 1.611 37 (16.51%), 35 (11.08%), 26 (8.67%)
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Table 4: Impact of community characteristics

The table documents the impact of a firm’s community average characteristics on the firm’s
leverage. The specifications include fixed effects at the firm, quarter, and industry×quarter
levels. Industries are classified at SIC 1-digit level. Panel-robust standard errors are clustered
at the firm level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Dependent variable: Firm leverage Li,t

(1) (2) (3) (4)

ROACommunity,t−1 −1.862∗∗∗ −0.938∗∗∗ −0.353∗∗∗ −0.192∗

(0.093) (0.120) (0.112) (0.114)
MBCommunity,t−1 −0.102∗∗∗ −0.041∗∗∗ −0.013∗∗∗ −0.001

(0.004) (0.005) (0.005) (0.005)
SizeCommunity,t−1 0.027∗∗∗ 0.012∗∗∗ 0.009∗∗∗ 0.015∗∗∗

(0.003) (0.004) (0.003) (0.003)
TangCommunity,t−1 −0.158∗∗∗ −0.085∗∗∗ −0.073∗∗∗ −0.115∗∗∗

(0.029) (0.030) (0.026) (0.026)

ROAt−1 −0.472∗∗∗ −0.464∗∗∗

(0.019) (0.019)
MBt−1 −0.039∗∗∗ −0.039∗∗∗

(0.001) (0.001)
Sizet−1 0.002 0.002

(0.004) (0.004)
Tangt−1 0.225∗∗∗ 0.214∗∗∗

(0.022) (0.022)

Fixed effects firm firm, time firm, time firm, ind×time
Observations 114316 114316 114316 114316
R2 (Within) 0.064 0.043 0.191 0.183
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Table 5: Impact of direct and indirect competitors’ characteristics

The table documents the impact of the characteristics of a firm’s direct and indirect com-
petitors on the firm’s leverage . The specifications include fixed effects at the firm, quarter,
and industry×quarter levels. Panel-robust standard errors are clustered at the firm level.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Dependent variable: Firm leverage Li,t

(1) (2) (3) (4)

ROAOffdiagonal
Indirect competitors,t−1 −1.063∗∗∗ −0.615∗∗∗ −0.322∗∗∗ −0.233∗∗∗

(0.073) (0.078) (0.072) (0.074)

MBOffdiagonal
Indirect competitors,t−1 −0.061∗∗∗ −0.029∗∗∗ −0.013∗∗∗ −0.011∗∗∗

(0.003) (0.004) (0.003) (0.004)

SizeOffdiagonal
Indirect competitors,t−1 0.021∗∗∗ 0.006∗∗∗ 0.002 0.002

(0.002) (0.002) (0.002) (0.002)

TangOffdiagonal
Indirect competitors,t−1 0.026 0.088∗∗∗ 0.062∗∗ 0.021

(0.028) (0.029) (0.026) (0.026)

ROADirect competitors,t−1 −0.218∗∗∗ −0.190∗∗∗ −0.109∗∗∗ −0.103∗∗∗

(0.031) (0.031) (0.028) (0.028)
MBDirect competitors,t−1 −0.018∗∗∗ −0.014∗∗∗ −0.010∗∗∗ −0.009∗∗∗

(0.002) (0.002) (0.002) (0.002)
SizeDirect competitors,t−1 0.002∗∗ −0.001 0.000 −0.000

(0.001) (0.001) (0.001) (0.001)
TangDirect competitors,t−1 −0.008 0.016 −0.017 −0.007

(0.017) (0.017) (0.015) (0.015)

ROAt−1 −0.464∗∗∗ −0.458∗∗∗

(0.018) (0.019)
MBt−1 −0.038∗∗∗ −0.038∗∗∗

(0.001) (0.001)
Sizet−1 0.002 0.002

(0.004) (0.004)
Tangt−1 0.212∗∗∗ 0.203∗∗∗

(0.022) (0.022)

Fixed effects firm firm, time firm, time firm, ind×time
Observations 114316 114316 114316 114316
R2 (Within) 0.066 0.052 0.198 0.196
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Table 6: Impact of community leverage

The table documents the impact of a firm’s community members’ leverage on the firm’s lever-
age. Panel A provides OLS estimates. Panel B provides granular IV estimates. Community
leverage is instrumented with a weighted sum of shocks. For Panel B, in specifications (1)
and (2) shocks are based on stock returns of community members. In specifications (3) and
(4) shocks are based on changes in leverage of community members. The weights reflect the
relative importance of each firm in its community and are based on eigenvalue centrality.
The specifications include fixed effects at the firm, quarter, and industry×quarter levels.
Industries are classified at SIC 1-digit level. Panel-robust standard errors are clustered at
the firm level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Panel A: OLS

Dependent variable: Firm leverage Li,t

(1) (2) (3) (4)

LCommunity,t−1 0.553*** 0.266*** 0.218*** 0.175***
(0.022) (0.029) (0.026) (0.027)

ROAi,t−1 -0.475∗∗∗ -0.466∗∗∗

(0.019) (0.019)
MBi,t−1 -0.039∗∗∗ -0.038∗∗∗

(0.001) (0.001)
Sizei,t−1 0.002 0.003

(0.004) (0.004)
Tangi,t−1 0.221∗∗∗ 0.208∗∗∗

(0.022) (0.022)

Fixed effects firm firm, time firm, time firm, ind×time
Observations 114316 114316 114316 114316
R2 (Within) 0.047 0.034 0.199 0.196

Panel B: Granular IV

Dependent variable: Firm leverage Li,t

Return-based GIV Leverage-based GIV

(1) (2) (3) (4)

L̂Community,t−1 0.752∗∗∗ 0.534∗∗∗ 0.732∗∗∗ 0.532∗∗

(0.176) (0.187) (0.228) (0.256)

ROAi,t−1 −0.465∗∗∗ −0.461∗∗∗ −0.466∗∗∗ −0.461∗∗∗

(0.023) (0.023) (0.024) (0.023)
MBi,t−1 −0.039∗∗∗ −0.038∗∗∗ −0.039∗∗∗ −0.038∗∗∗

(0.001) (0.001) (0.001) (0.001)
Sizei,t−1 0.002 0.002 0.002 0.002

(0.004) (0.004) (0.004) (0.004)
Tangi,t−1 0.208∗∗∗ 0.202∗∗∗ 0.208∗∗∗ 0.202∗∗∗

(0.023) (0.022) (0.023) (0.022)

Fixed effects firm, time firm, ind×time firm, time firm, ind×time
Observations 117765 117765 117765 117765
R2 0.126 0.138 0.129 0.138
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Table 7: Falsification tests

The table reports falsification tests supporting the validity of the granular IV framework.
In the baseline granular IV, community leverage is instrumented with a weighted sum of
shocks. In specifications (1) and (2) shocks are based on stock returns of community mem-
bers. In specifications (3) and (4) shocks are based on changes in leverage of community
members. The weights reflect the relative importance of each firm in its community and
are based on eigenvalue centrality. Specifications (1) and (3) report a pre-trend test where
the dependent variable is lagged by one period. Specifications (2) and (4) report a placebo
tests where the dependent variable is replaced by a contemporaneous firm policy choice that
is firm’ investment rate. The specifications include fixed effects at the firm, quarter, and
industry×quarter levels. Industries are classified at SIC 1-digit level. Panel-robust standard
errors are clustered at the firm level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Dependent variable

Lagged leveragei,t−4 Investmenti,t Lagged leveragei,t−4 Investmenti,t

Return-based GIV Leverage-based GIV

(1) (2) (3) (4)

L̂Community,t−1 −0.147 −0.069 −0.329 −0.041
(0.244) (0.065) (0.329) (0.083)

ROAi,t−1 −0.142∗∗∗ 0.066∗∗∗ −0.142∗∗∗ 0.066∗∗∗

(0.022) (0.008) (0.022) (0.008)
MBi,t−1 −0.029∗∗∗ 0.009∗∗∗ −0.029∗∗∗ 0.009∗∗∗

(0.001) (0.000) (0.001) (0.000)
Sizei,t−1 −0.032∗∗∗ 0.001 −0.032∗∗∗ 0.001

(0.004) (0.001) (0.004) (0.001)
Tangi,t−1 0.133∗∗∗ −0.146∗∗∗ 0.136∗∗∗ −0.146∗∗∗

(0.024) (0.007) (0.024) (0.007)

Fixed effects firm, ind×time firm, ind×time firm, ind×time firm, ind×time
Observations 107296 116791 107296 116791
R2 0.059 0.046 0.045 0.047
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Table 8: Impact of direct competitors vs. community leverage

The table documents the impact of a firm’s direct competitors vs. community members’
leverage on the firm’s leverage. Panel A provides OLS estimates. Panel B provides granular
IV estimates. Direct competitor leverage and community leverage are instrumented with a
weighted sum of shocks. For Panel B, in specifications (1) and (2) shocks are based on stock
returns. In specifications (3) and (4) shocks are based on changes in leverage. The weights
reflect the relative importance of each firm in its community and are based on eigenvalue
centrality. The specifications include fixed effects at the firm, quarter, and industry×quarter
levels. Industries are classified at SIC 1-digit level. Panel-robust standard errors are clustered
at the firm level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Panel A: OLS

Dependent variable: Firm leverage Li,t

(1) (2) (3) (4)

LDirect competitors,t−1 0.157∗∗∗ 0.128∗∗∗ 0.096∗∗∗ 0.085∗∗∗

(0.011) (0.011) (0.010) (0.010)
LCommunity,t−1 0.439∗∗∗ 0.206∗∗∗ 0.174∗∗∗ 0.140∗∗∗

(0.022) (0.029) (0.026) (0.027)

ROAi,t−1 −0.470∗∗∗ −0.462∗∗∗

(0.019) (0.019)
MBi,t−1 −0.039∗∗∗ −0.038∗∗∗

(0.001) (0.001)
Sizei,t−1 0.003 0.003

(0.004) (0.004)
Tangi,t−1 0.215∗∗∗ 0.204∗∗∗

(0.022) (0.022)

Fixed effects firm firm, time firm, time firm, ind×time
Observations 114316 114316 114316 114316
R2 (Within) 0.063 0.053 0.208 0.206

Panel B: Granular IV

Dependent variable: Firm leverage Li,t

Return-based GIV Leverage-based GIV

(1) (2) (3) (4)

L̂Direct competitors,t−1 0.174∗∗∗ 0.145∗∗∗ 0.116∗∗∗ 0.092∗∗∗

(0.030) (0.029) (0.030) (0.029)

L̂Community,t−1 0.534∗∗∗ 0.387∗∗∗ 0.583∗∗∗ 0.422∗∗∗

(0.117) (0.121) (0.144) (0.157)

ROAi,t−1 −0.462∗∗∗ −0.459∗∗∗ −0.465∗∗∗ −0.462∗∗∗

(0.018) (0.018) (0.018) (0.018)
MBi,t−1 −0.038∗∗∗ −0.038∗∗∗ −0.038∗∗∗ −0.038∗∗∗

(0.001) (0.001) (0.001) (0.001)
Sizei,t−1 0.003 0.003 0.003 0.003

(0.004) (0.004) (0.004) (0.004)
Tangi,t−1 0.203∗∗∗ 0.197∗∗∗ 0.205∗∗∗ 0.199∗∗∗

(0.022) (0.022) (0.022) (0.022)

Fixed effects firm, time firm, ind×time firm, time firm, ind×time
Observations 114202 114202 114202 114202
R2 0.1475 0.1495 0.1492 0.1511
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Table 9: Impact of direct and indirect competitors’ leverage

The table documents the impact of leverage of a firm’s direct and indirect competitors
on the firm’s leverage. The specifications include fixed effects at the firm, quarter, and
industry×quarter levels. Industries are classified at SIC 1-digit level. Panel-robust standard
errors are clustered at the firm level. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Dependent variable: Firm leverage Li,t

(1) (2) (3) (4)

Panel A: Impact of direct competitors’ leverage

LDirect competitors,t−1 0.224∗∗∗ 0.141∗∗∗ 0.107∗∗∗ 0.092∗∗∗

(0.010) (0.011) (0.010) (0.010)

RZ controls no no yes yes

Fixed effects firm firm, time firm, time firm, ind×time
Observations 114316 114316 114316 114316
R2 (Within) 0.037 0.032 0.197 0.195

Panel B: Impact of indirect competitors’ leverage

LOffdiagonal
Indirect competitors,t−1 0.429∗∗∗ 0.221∗∗∗ 0.157∗∗∗ 0.120∗∗∗

(0.018) (0.021) (0.018) (0.018)

RZ controls no no yes yes

Fixed effects firm firm, time firm, time firm, ind×time
Observations 114316 114316 114316 114316
R2 (Within) 0.049 0.038 0.199 0.195

Panel C: Impact of direct and indirect competitors’ leverage

LOffdiagonal
Indirect competitors,t−1 0.341∗∗∗ 0.169∗∗∗ 0.118∗∗∗ 0.087∗∗∗

(0.018) (0.020) (0.018) (0.018)
LDirect competitors,t−1 0.152∗∗∗ 0.118∗∗∗ 0.091∗∗∗ 0.082∗∗∗

(0.011) (0.011) (0.010) (0.010)

RZ controls no no yes yes

Fixed effects firm firm, time firm, time firm, ind×time
Observations 114316 114316 114316 114316
R2 (Within) 0.064 0.054 0.208 0.204
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Table 10: Degree distribution of competition network and communities

This table reports tail information for the competition network and communities. The ’Entire network’

shows the average measures over all quarters. Each row of ’Community i’ shows the average measures over

all quarters for each of the persistent major community i. The row of ’Communities’ is the further average

measure of all communities. The Hill estimator takes the top 5% upper order in estimation.

Skewness Kurtosis Hill

Entire network 7.510 89.064 2.074
Communities 3.296 18.051 2.597

Community 1 5.568 39.138 1.629
Community 2 3.898 21.930 2.267
Community 3 3.298 15.851 2.220
Community 4 7.197 63.518 1.603
Community 5 3.640 18.984 2.212
Community 6 2.347 9.378 3.355
Community 7 1.982 4.656 2.379
Community 8 2.909 12.349 2.634
Community 9 1.284 1.361 3.913
Community 10 2.242 6.130 2.661
Community 11 1.895 5.268 3.688

Table 11: Comparison with TNIC

The table provides a comparison between the competition links in Factset Revere and the TNIC measure
by Hoberg and Phillips (2016). Panel A reports the comparison for the last quarter in our sample. Panel B
reports the comparison for the average across all quarters.

Panel A: Networks for last quarter

TNIC

Yes No Total

Yes 1,044 1,464 2,508
Revere No 14,344 385,004 399,348

Total 15,388 386,468 401,856

Panel B: Networks for all quarters averaged

TNIC

Yes No Total

Yes 521 969 1,490
Revere No 4,232 261,959 266,191

Total 4,753 262,928 267,681
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